Browsing by Subject "Statistical machine translation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Recognizing objects and scenes in news videos(Springer, 2006-07) Baştan, Muhammet; Duygulu, PınarWe propose a new approach to recognize objects and scenes in news videos motivated by the availability of large video collections. This approach considers the recognition problem as the translation of visual elements to words. The correspondences between visual elements and words are learned using the methods adapted from statistical machine translation and used to predict words for particular image regions (region naming), for entire images (auto-annotation), or to associate the automatically generated speech transcript text with the correct video frames (video alignment). Experimental results are presented on TRECVID 2004 data set, which consists of about 150 hours of news videos associated with manual annotations and speech transcript text. The results show that the retrieval performance can be improved by associating visual and textual elements. Also, extensive analysis of features are provided and a method to combine features are proposed. © Springer-Verlag Berlin Heidelberg 2006.Item Open Access Translating images to words for recognizing objects in large image and video collections(Springer, 2006) Duygulu, P.; Baştan M.; Forsyth, D.We present a new approach to the object recognition problem, motivated by the recent availability of large annotated image and video collections. This approach considers object recognition as the translation of visual elements to words, similar to the translation of text from one language to another. The visual elements represented in feature space are categorized into a finite set of blobs. The correspondences between the blobs and the words are learned, using a method adapted from Statistical Machine Translation. Once learned, these correspondences can be used to predict words corresponding to particular image regions (region naming), to predict words associated with the entire images (autoannotation), or to associate the speech transcript text with the correct video frames (video alignment). We present our results on the Corel data set which consists of annotated images and on the TRECVID 2004 data set which consists of video frames associated with speech transcript text and manual annotations.