Browsing by Subject "State-space description"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Communication efficient channel estimation over distributed networks(IEEE, 2014) Sayın, Muhammed O.; Vanlı, N. Denizcan; Göze, T.; Kozat, Süleyman SerdarWe study diffusion based channel estimation in distributed architectures suitable for various communication applications such as cognitive radios. Although the demand for distributed processing is steadily growing, these architectures require a substantial amount of communication among their nodes (or processing elements) causing significant energy consumption and increase in carbon footprint. Due to growing awareness of telecommunication industry's impact on the environment, the need to mitigate this problem is indisputable. To this end, we introduce algorithms significantly reducing the communication load between distributed nodes, which is the main cause in energy consumption, while providing outstanding performance. In this framework, after each node produces its local estimate of the communication channel, a single bit or a couple of bits of information is generated using certain random projections. This newly generated data is diffused and then used in neighboring nodes to recover the original full information, i.e., the channel estimate of the desired communication channel. We provide the complete state-space description of these algorithms and demonstrate the substantial gains through our experiments.Item Open Access Single bit and reduced dimension diffusion strategies over distributed networks(IEEE, 2013) Sayin, M. O.; Kozat, S. S.We introduce novel diffusion based adaptive estimation strategies for distributed networks that have significantly less communication load and achieve comparable performance to the full information exchange configurations. After local estimates of the desired data is produced in each node, a single bit of information (or a reduced dimensional data vector) is generated using certain random projections of the local estimates. This newly generated data is diffused and then used in neighboring nodes to recover the original full information. We provide the complete state-space description and the mean stability analysis of our algorithms.