BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Stability number"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A simpler characterization of a spectral lower bound on the clique number
    (Springer, 2010) Yıldırım, E. A.
    Given a simple, undirected graph G, Budinich (Discret Appl Math 127:535-543, 2003) proposed a lower bound on the clique number of G by combining the quadratic programming formulation of the clique number due to Motzkin and Straus (Can J Math 17:533-540, 1965) with the spectral decomposition of the adjacency matrix of G. This lower bound improves the previously known spectral lower bounds on the clique number that rely on the Motzkin-Straus formulation. In this paper, we give a simpler, alternative characterization of this lower bound. For regular graphs, this simpler characterization allows us to obtain a simple, closed-form expression of this lower bound as a function of the positive eigenvalues of the adjacency matrix. Our computational results shed light on the quality of this lower bound in comparison with the other spectral lower bounds on the clique number.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback