Browsing by Subject "Spring-loaded inverted pendulum"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Approximate analytic solutions to non-symmetric stance trajectories of the passive Spring-Loaded Inverted Pendulum with damping(Springer Netherlands, 2010) Saranlı U.; Arslan, Ö.; Ankaralı, M. M.; Morgül, Ö.This paper introduces an accurate yet analytically simple approximation to the stance dynamics of the Spring-Loaded Inverted Pendulum (SLIP) model in the presence of non-negligible damping and non-symmetric stance trajectories. Since the SLIP model has long been established as an accurate descriptive model for running behaviors, its careful analysis is instrumental in the design of successful locomotion controllers. Unfortunately, none of the existing analytic methods in the literature explicitly take damping into account, resulting in degraded predictive accuracy when they are used for dissipative runners. We show that the methods we propose not only yield average predictive errors below 2% in the presence of significant damping, but also outperform existing alternatives to approximate the trajectories of a lossless model. Finally, we exploit both the predictive performance and analytic simplicity of our approximations in the design of a gait-level running controller, demonstrating their practical utility and performance benefits. © 2010 Springer Science+Business Media B.V.Item Open Access On the periodic gait stability of a multi-actuated spring-mass hopper model via partial feedback linearization(Springer Netherlands, 2017) Hamzaçebi, H.; Morgül, Ö.Spring-loaded inverted pendulum (SLIP) template (and its various derivatives) could be considered as the mostly used and widely accepted models for describing legged locomotion. Despite their simple nature, as being a simple spring-mass model in dynamics perspective, the SLIP model and its derivatives are formulated as restricted three-body problem, whose non-integrability has been proved long before. Thus, researchers proceed with approximate analytical solutions or use partial feedback linearization when numerical integration is not preferred in their analysis. The key contributions of this paper can be divided into two parts. First, we propose a dissipative SLIP model, which we call as multi-actuated dissipative SLIP (MD-SLIP), with two extended actuators: one linear actuator attached serially to the leg spring and one rotary actuator attached to hip. The second contribution of this paper is a partial feedback linearization strategy by which we can cancel some nonlinear dynamics of the proposed model and obtain exact analytical solution for the equations of motion. This allows us to investigate stability characteristics of the hopping gait obtained from the MD-SLIP model. We illustrate the applicability of our solutions with open-loop and closed-loop hopping performances on rough terrain simulations. © 2017, Springer Science+Business Media Dordrecht.