Browsing by Subject "Spiral resonators"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Complementary spiral resonators for ultrawideband suppression of simultaneous switching noise in high-speed circuits(Electromagnetics Academy, 2014) Ghobadi, A.; Topalli K.; Bıyıklı, Necmi; Okyay, Ali KemalIn this paper, a novel concept for ultra-wideband simultaneous switching noise (SSN) mitigation in high-speed printed circuit boards (PCBs) is proposed. Using complementary spiral resonators (CSRs) etched on only a single layer of the power plane and cascaded co-centrically around the noise port, ultra-wideband SSN suppression by 30 dB is achieved in a frequency span ranging from 340MHz to beyond 10 GHz. By placing a slit in the co-centric rings, lower cut-off frequency is reduced to 150 MHz, keeping the rest of the structure unaltered. Finally, the power plane structure with modified complementary spiral resonators (MCSRs) is designed, fabricated, and evaluated experimentally. Measurement and simulation results are in well-agreement.Item Open Access Metamaterial based cloaking with sparse distribution of spiral resonators(SPIE, 2010) Guven, K.; Saenz, E.; Gonzalo, R.; Özbay, Ekmel; Tretyakov, S.We investigate the application of a metamaterial that is formed by the sparse distribution of spiral resonators as an optical transformation medium is in order to achieve electromagnetic cloaking. The well-known Clausius-Mossotti formula relates the microscopic polarizability of a single resonant particle to the macroscopic permittivity and permeability of the effective medium. By virtue of transformation optics, the permittivity and permeability of the medium, in turn, can be designed according to a coordinate transformation that maps a certain region of space to its surrounding. As a result, the mapped region can be cloaked from electromagnetic waves. In this study, the spirals are optimized to exhibit equal permittivity and permeability response so that the cloak formed by these spirals will work for both the TE and TM polarizations. An experimental setup is developed to visualize the steady state propagation of electromagnetic waves within a parallel plate waveguide including the cloaking structure. The measured and simulated electromagnetic field image indicates that the forward scattering of a metal cylinder is significantly reduced when placed within the cloak. © 2010 SPIE.Item Open Access Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture(Optical Society of American (OSA), 2009) Alici, K.B.; Bilotti F.; Vegni L.; Özbay, EkmelIn the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with ë/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency. © 2009 Optical Society of America.