Browsing by Subject "Spectroscopic analysis"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Electrostatic force spectroscopy of near surface localized states(Institute of Physics Publishing Ltd., 2005) Dâna, A.; Yamamoto, Y.Electrostatic force microscopy at cryogenic temperatures is used to probe the electrostatic interaction of a conductive atomic force microscopy tip and electronic charges trapped in localized states in an insulating layer on a semiconductor. Measurement of the frequency shift of the cantilever as a function of tip-sample bias voltage shows discrete peaks at certain voltages when the tip is located near trap centres. These discrete changes in frequency are attributed to one by one filling of individual electronic states when the quantized energies traverse the substrate conduction band Fermi energy as the tip-sample voltage is increased. Theoretical analysis of the experiment suggests that such a measurement of the cantilever frequency shift as a function of bias voltage can be interpreted as an AC force measurement, from which spectroscopic information about the location and energy of localized states can be deduced. Experimental results from the study of a sample with InAs quantum dots as trap centres are presented.Item Open Access Femtosecond response of J aggregates adsorbed onto silver colloid surfaces(2003) Yaǧlioǧlu G.; Dorsinville, R.; Özçelik, S.The observation of stimulated emission from J aggregates adsorbed onto silver colloid surfaces using femtosecond excitation was reported. The stimulated emission was inferred from the excitation intensity and wavelength dependence of the emission band. The stimulated emission originated from the amplification of the one-exciton state emission by an induced transition from the two-exciton state to the one-exciton state.Item Open Access A figure of merit for optimization of nanocrystal flash memory design(2008) Dâna, A.; Akca, I.; Aydınlı, Atilla; Turan, R.; Finstad, T. G.Nanocrystals can be used as storage media for carriers in flash memories. The performance of a nanocrystal flash memory depends critically on the choice of nanocrystal size and density as well as on the choice of tunnel dielectric properties. The performance of a nanocrystal memory device can be expressed in terms of write/erase speed, carrier retention time and cycling durability. We present a model that describes the charge/discharge dynamics of nanocrystal flash memories and calculate the effect of nanocrystal, gate, tunnel dielectric and substrate properties on device performance. The model assumes charge storage in quantized energy levels of nanocrystals. Effect of temperature is included implicitly in the model through perturbation of the substrate minority carrier concentration and Fermi level. Because a large number of variables affect these performance measures, in order to compare various designs, a figure of merit that measures the device performance in terms of design parameters is defined as a function of write/erase/discharge times which are calculated using the theoretical model. The effects of nanocrystal size and density, gate work function, substrate doping, control and tunnel dielectric properties and device geometry on the device performance are evaluated through the figure of merit. Experimental data showing agreement of the theoretical model with the measurement results are presented for devices that has PECVD grown germanium nanocrystals as the storage media. CopyrightItem Open Access On the profile of frequency and voltage dependent interface states and series resistance in (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures by using current-voltage (I-V) and admittance spectroscopy methods(Elsevier, 2011-06-08) Demirezen, S.; Altindal, S.; Özelik, S.; Özbay, EkmelIn order to explain the experimental effect of interface states (N ss) and series resistance (Rs) of device on the non-ideal electrical characteristics, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of (Ni/Au)/Al 0.22Ga0.78N/AlN/GaN heterostructures were investigated at room temperature. Admittance measurements (C-V and G/ω-V) were carried out in frequency and bias voltage ranges of 2 kHz-2 MHz and (-5 V)-(+5 V), respectively. The voltage dependent Rs profile was determined from the I-V data. The increasing capacitance behavior with the decreasing frequency at low frequencies is a proof of the presence of interface states at metal/semiconductor (M/S) interface. At various bias voltages, the ac electrical conductivity (σac) is independent from frequencies up to 100 kHz, and above this frequency value it increases with the increasing frequency for each bias voltage. In addition, the high-frequency capacitance (C m) and conductance (Gm/ω) values measured under forward and reverse bias were corrected to minimize the effects of series resistance. The results indicate that the interfacial polarization can more easily occur at low frequencies. The distribution of Nss and R s is confirmed to have significant effect on non-ideal I-V, C-V and G/ω-V characteristics of (Ni/Au)/Al0.22Ga0.78N/AlN/ GaN heterostructures.Item Open Access Photosensitization of PVC dehydrochlorination by hydroquinone for improved optical and electrical properties(Elsevier, 2004) Balci, S.; Birer, O.; Süzer, ŞefikHydroquinone (HQ) is incorporated into the PVC films containing methyl violet or polyaniline (emeraldine base) for sensitizing the UV induced optical or electrical changes, respectively. It is observed that introduction of a small amount (less than 10% by weight) of HQ not only brings the dehydrochlorination onset down to 310 nm but also sensitizes the process by more than one order of magnitude as well as leading to strong polyene formation. UV-Vis-NIR spectroscopy is used to characterize the changes and investigate the mechanism. Accordingly, it is postulated that this HQ assisted photo-dehydrochlorination involves predominantly the formation of an excited triplet via an efficient intersystem crossing in HQ followed by abstraction of hydrogen from the poly(vinyl chloride) to initiate a zipping reaction in the PVC matrix. © 2004 Elsevier Ltd. All rights reserved.Item Open Access Spectroscopic investigation of nitrate-metal and metal-surfactant interactions in the solid AgNO3/C12EO10 and liquid-crystalline [M(H2O)n](NO3)2/C12EO10 systems(American Chemical Society, 2003) Dag, Ö.; Samarskaya, O.; Tura, C.; Günay, A.; Çelik, Ö.Interactions of the nitrate ions in various metal nitrate salts with CnH2n-1(CH2CH2O)mOH (CnEOm)-type nonionic surfactants have been investigated both in the solid and in the liquid-crystalline (LC) systems. In the ternary system, the mixture of salt/water/CnEOm has a mesophase up to a certain concentration of salt, and the nitrate ions in this phase are usually in a free-ion form. However, upon the evaporation of the water phase, the nitrate ion interacts with the metal center and coordinates as either a bidentate or unidentate ligand. It is this interaction that makes the AgNO3 ternary system undergo a phase separation by releasing solid Ag(CnEOm)xNO3 complex crystals. In contrast, the salt/surfactant systems maintain their stable LC phases for months. Note also that the salt/surfactant systems consist of transition-metal aqua complexes in which the coordinated water molecules play a significant role in the self-assembly and organization of the nonionic surfactant molecules into an LC mesophase. Throughout this work, Fourier transform infrared spectroscopy has been extensively used to investigate the interactions of the nitrate ions with a metal center and the metal ions with the surfactant molecules. Polarized optical microscopy and X-ray diffraction techniques have been applied to investigate the nature of the crystalline and LC phases.Item Open Access Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification(American Chemical Society, 2016) Arslan, O.; Aytac Z.; Uyar, TamerElectrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.Item Open Access Theoretical and spectroscopic investigations on the structure and bonding in B-C-N thin films(2009) Bengu, E.; Genisel, M. F.; Gulseren, O.; Ovali, R.In this study, we have synthesized boron, carbon, and nitrogen containing films using RF sputter deposition. We investigated the effects of deposition parameters on the chemical environment of boron, carbon, and nitrogen atoms inside the films. Techniques used for this purpose were grazing incidence reflectance-Fourier-transform infrared spectroscopy (GIR-FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). GIR-FTIR experiments on the B-C-N films deposited indicated presence of multiple features in the 600 to 1700 cm- 1 range for the infrared (IR) spectra. Analysis of the IR spectra, XPS and the corresponding EELS data from the films has been done in a collective manner. The results from this study suggested even under nitrogen rich synthesis conditions carbon atoms in the B-C-N films prefer to be surrounded by other carbon atoms rather than boron and/or nitrogen. Furthermore, we have observed a similar behavior in the chemistry of B-C-N films deposited with increasing substrate bias conditions. In order to better understand these results, we have compared and evaluated the relative stability of various nearest-neighbor and structural configurations of carbon atoms in a single BN sheet using DFT calculations. These calculations also indicated that structures and configurations that increase the relative amount of C-C bonding with respect to B-C and/or C-N were energetically favorable than otherwise. As a conclusion, carbon tends to phase-segregate in to carbon clusters rather than displaying a homogeneous distribution for the films deposited in this study under the deposition conditions studied.