Browsing by Subject "Spectral informations"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Automatic detection of geospatial objects using multiple hierarchical segmentations(Institute of Electrical and Electronics Engineers, 2008-07) Akçay, H. G.; Aksoy, S.The object-based analysis of remotely sensed imagery provides valuable spatial and structural information that is complementary to pixel-based spectral information in classification. In this paper, we present novel methods for automatic object detection in high-resolution images by combining spectral information with structural information exploited by using image segmentation. The proposed segmentation algorithm uses morphological operations applied to individual spectral bands using structuring elements in increasing sizes. These operations produce a set of connected components forming a hierarchy of segments for each band. A generic algorithm is designed to select meaningful segments that maximize a measure consisting of spectral homogeneity and neighborhood connectivity. Given the observation that different structures appear more clearly at different scales in different spectral bands, we describe a new algorithm for unsupervised grouping of candidate segments belonging to multiple hierarchical segmentations to find coherent sets of segments that correspond to actual objects. The segments are modeled by using their spectral and textural content, and the grouping problem is solved by using the probabilistic latent semantic analysis algorithm that builds object models by learning the object-conditional probability distributions. The automatic labeling of a segment is done by computing the similarity of its feature distribution to the distribution of the learned object models using the Kullback-Leibler divergence. The performances of the unsupervised segmentation and object detection algorithms are evaluated qualitatively and quantitatively using three different data sets with comparative experiments, and the results show that the proposed methods are able to automatically detect, group, and label segments belonging to the same object classes. © 2008 IEEE.Item Open Access Kentsel yapıların biçimbilimsel bölütlenmesi(IEEE, 2007-06) Akçay, H. Gökhan; Aksoy, SelimYüksek çözünürlükteki uzaktan algılamalı uydu görüntülerinde bölütleme kent uygulamalarında önemli bir problemdir çünkü elde edilen bölütlemelerle sınıflandırma için piksel tabanlı spektral bilginin yanında uzamsal ve yapısal bilgiler elde edilebilir. Bu bildiride, biçimbilimsel işlemlerle çıkarılan yapısal bilgi ve ana bileşenler analizi ile özetlenen spektral bilgi kullanılarak gürültüden etkilenmeyen bölütler elde eden bir yöntem sunduk. Yapılan deneyler yöntemin görüntü üzerinde komşuluk bilgisini ve spektral bilgiyi beraber kullanmayan başka bir yönteme göre daha düzgün ve anlamlı yapılar bulduğunu göstermiştir. Automatic segmentation of high-resolution remote sensing imagery is an important problem in urban applications because the resulting segmentations can provide valuable spatial and structural information that are complementary to pixel-based spectral information in classification. We present a method that combines structural information extracted by morphological processing with spectral information summarized using principal components analysis to produce precise segmentations that are also robust to noise. The experiments show that the method is able to detect structures in the image which are more precise and more meaningful than the structures detected by another approach that does not make strong use of neighborhood and spectral information.