BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Spatial arrangements"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Detection of compound structures using multiple hierarchical segmentations
    (IEEE, 2014) Akçay, Hüseyin Gökhan; Aksoy, Selim
    In this paper, we present a method for automatic compound structure detection in high-resolution images. Given a query compound structure, our aim is to detect coherent regions with similar spatial arrangement and characteristics in multiple hierarchical segmentations. A Markov random field is constructed by representing query regions as variables and connecting the vertices that are spatially close by edges. Then, a maximum entropy distribution is assumed over the query region process and selection of similar region processes among a set of region hierarchies is achieved by maximizing the query model. Experiments using WorldView-2 images show the efficiency of probabilistic modeling of compound structures. © 2014 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Image classification using subgraph histogram representation
    (IEEE, 2010) Özdemir, Bahadır; Aksoy, Selim
    We describe an image representation that combines the representational power of graphs with the efficiency of the bag-of-words model. For each image in a data set, first, a graph is constructed from local patches of interest regions and their spatial arrangements. Then, each graph is represented with a histogram of subgraphs selected using a frequent subgraph mining algorithm in the whole data. Using the subgraphs as the visual words of the bag-of-words model and transforming of the graphs into a vector space using this model enables statistical classification of images using support vector machines. Experiments using images cut from a large satellite scene show the effectiveness of the proposed representation in classification of complex types of scenes into eight high-level semantic classes. © 2010 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modeling urbanization using building patterns
    (2007) Doǧrusöz, E.; Aksoy, S.
    Automatic extraction of buildings and modeling of their spatial arrangements provide essential information for urban applications. This paper describes our work on modeling urbanization using spatial building patterns. Building detection is done using Bayesian classification of multi-spectral information. The individual buildings are used as textural primitives, and co-occurrence based spatial domain features and Fourier spectrum-based frequency domain features are used to model their repetitiveness and periodicity at particular orientations. These features are used to classify image neighborhoods as organized (regular) and unorganized (irregular). Experiments with high-resolution Ikonos imagery show that the proposed technique can be used for automatic segmentation of urban scenes and extraction of valuable information about urban growth.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A spatial data model for remote sensing image retrieval
    (IEEE, 2013) Akçay, H. Gökhan; Aksoy, Selim
    Given a query region, our aim is to discover and retrieve regions with similar spatial arrangement and characteristics in other areas of the same large image or in other images. A Markov random field is constructed by representing regions as variables and connecting the vertices that are spatially close by edges. Then, a maximum entropy distribution is assumed over the query region process and retrieval of the similar region processes on the target image is achieved according to their probability. Experiments using WorldView-2 images show that statistical modelling of compound structures enable high-level and large-scale retrieval applications. © 2013 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback