Browsing by Subject "Sparse solutions"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Expectation maximization based matching pursuit(IEEE, 2012) Gurbuz, A.C.; Pilanci, M.; Arıkan, OrhanA novel expectation maximization based matching pursuit (EMMP) algorithm is presented. The method uses the measurements as the incomplete data and obtain the complete data which corresponds to the sparse solution using an iterative EM based framework. In standard greedy methods such as matching pursuit or orthogonal matching pursuit a selected atom can not be changed during the course of the algorithm even if the signal doesn't have a support on that atom. The proposed EMMP algorithm is also flexible in that sense. The results show that the proposed method has lower reconstruction errors compared to other greedy algorithms using the same conditions. © 2012 IEEE.Item Open Access Provably optimal sparse solutions to overdetermined linear systems with non-negativity constraints in a least-squares sense by implicit enumeration(Springer, 2021-12) Aktaş, Fatih Selim; Ekmekcioglu, Ömer; Pinar, Mustafa ÇelebiComputing sparse solutions to overdetermined linear systems is a ubiquitous problem in several fields such as regression analysis, signal and image processing, information theory and machine learning. Additional non-negativity constraints in the solution are useful for interpretability. Most of the previous research efforts aimed at approximating the sparsity constrained linear least squares problem, and/or finding local solutions by means of descent algorithms. The objective of the present paper is to report on an efficient and modular implicit enumeration algorithm to find provably optimal solutions to the NP-hard problem of sparsity-constrained non-negative least squares. We focus on the problem where the system is assumed to be over-determined where the matrix has full column rank. Numerical results with real test data as well as comparisons of competing methods and an application to hyperspectral imaging are reported. Finally, we present a Python library implementation of our algorithm.