Browsing by Subject "Sparse matrix vector multiplication"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Minimizing communication through computational redundancy in parallel iterative solvers(2011) Torun, Fahreddin ŞükrüSparse matrix vector multiplication (SpMxV) of the form y = Ax is a kernel operation in iterative linear solvers used in scientific applications. In these solvers, the SpMxV operation is performed repeatedly with the same sparse matrix through iterations until convergence. Depending on the matrix and its decomposition, parallel SpMxV operation necessitates communication among processors in the parallel environment. The communication can be reduced by intelligent decomposition. However, we can further decrease the communication through data replication and redundant computation. The communication occurs due to the transfer of x-vector entries in row-parallel SpMxV computation. The input vector x of the next iteration is computed from the output vector of the current iteration through linear vector operations. Hence, a processor may compute a y-vector entry redundantly, which leads to a x-vector entry in the following iteration, instead of receiving that x-vector entry from another processor. Thus, redundant computation of that y-vector entry may lead to reduction in communication. In this thesis, we devise a directed-graph-based model that correctly captures the computation and communication pattern for above-mentioned iterative solvers. Moreover, we formulate the communication minimization by utilizing redundant computation of y-vector entries as a combinatorial problem on this directed graph model. We propose two heuristics to solve this combinatorial problem. Experimental results indicate that the communication reducing strategy by redundantly computing is promising.Item Open Access A Recursive Hypergraph Bipartitioning Framework for Reducing Bandwidth and Latency Costs Simultaneously(IEEE Computer Society, 2017) Selvitopi, O.; Acer, S.; Aykanat, CevdetIntelligent partitioning models are commonly used for efficient parallelization of irregular applications on distributed systems. These models usually aim to minimize a single communication cost metric, which is either related to communication volume or message count. However, both volume- and message-related metrics should be taken into account during partitioning for a more efficient parallelization. There are only a few works that consider both of them and they usually address each in separate phases of a two-phase approach. In this work, we propose a recursive hypergraph bipartitioning framework that reduces the total volume and total message count in a single phase. In this framework, the standard hypergraph models, nets of which already capture the bandwidth cost, are augmented with message nets. The message nets encode the message count so that minimizing conventional cutsize captures the minimization of bandwidth and latency costs together. Our model provides a more accurate representation of the overall communication cost by incorporating both the bandwidth and the latency components into the partitioning objective. The use of the widely-adopted successful recursive bipartitioning framework provides the flexibility of using any existing hypergraph partitioner. The experiments on instances from different domains show that our model on the average achieves up to 52 percent reduction in total message count and hence results in 29 percent reduction in parallel running time compared to the model that considers only the total volume. © 2016 IEEE.