Browsing by Subject "Sparse matrix decomposition"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Sparse matrix decomposition with optimal load balancing(IEEE, 1997-12) Pınar, Ali; Aykanat, CevdetOptimal load balancing in sparse matrix decomposition without disturbing the row/column ordering is investigated. Both asymptotically and run-time efficient exact algorithms are proposed and implemented for one-dimensional (1D) striping and two-dimensional (2D) jagged partitioning. Binary search method is successfully adopted to 1D striped decomposition by deriving and exploiting a good upper bound on the value of an optimal solution. A binary search algorithm is proposed for 2D jagged partitioning by introducing a new 2D probing scheme. A new iterative-refinement scheme is proposed for both 1D and 2D partitioning. Proposed algorithms are also space efficient since they only need the conventional compressed storage scheme for the given matrix, avoiding the need for a dense workload matrix in 2D decomposition. Experimental results on a wide set of test matrices show that considerably better decompositions can be obtained by using optimal load balancing algorithms instead of heuristics. Proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication (SpMxV), in the 64-way 1D decompositions, on the overall average. Our jagged partitioning algorithms are only 60% slower than a single SpMxV computation in the 8×8-way 2D decompositions, on the overall average.