Browsing by Subject "Source separation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Source and filter estimation for Throat-Microphone speech enhancement(Institute of Electrical and Electronics Engineers Inc., 2016) Turan, M. A. T.; Erzin, E.In this paper, we propose a new statistical enhancement system for throat microphone recordings through source and filter separation. Throat microphones (TM) are skin-attached piezoelectric sensors that can capture speech sound signals in the form of tissue vibrations. Due to their limited bandwidth, TM recorded speech suffers from intelligibility and naturalness. In this paper, we investigate learning phone-dependent Gaussian mixture model (GMM)-based statistical mappings using parallel recordings of acoustic microphone (AM) and TM for enhancement of the spectral envelope and excitation signals of the TM speech. The proposed mappings address the phone-dependent variability of tissue conduction with TM recordings. While the spectral envelope mapping estimates the line spectral frequency (LSF) representation of AM from TM recordings, the excitation mapping is constructed based on the spectral energy difference (SED) of AM and TM excitation signals. The excitation enhancement is modeled as an estimation of the SED features from the TM signal. The proposed enhancement system is evaluated using both objective and subjective tests. Objective evaluations are performed with the log-spectral distortion (LSD), the wideband perceptual evaluation of speech quality (PESQ) and mean-squared error (MSE) metrics. Subjective evaluations are performed with an A/B comparison test. Experimental results indicate that the proposed phone-dependent mappings exhibit enhancements over phone-independent mappings. Furthermore enhancement of the TM excitation through statistical mappings of the SED features introduces significant objective and subjective performance improvements to the enhancement of TM recordings. ©2015 IEEE.Item Open Access Superimposed event detection by particle filters(The Institution of Engineering and Technology, 2011) Urfalioglu, O.; Kuruoglu, E. E.; Çetin, A. EnisIn this study, the authors consider online detection and separation of superimposed events by applying particle filtering. They observe only a single-channel superimposed signal, which consists of a background signal and one or more event signals in the discrete-time domain. It is assumed that the signals are statistically independent and can be described by random processes with known parametric models. The activation and deactivation times of event signals are assumed to be unknown. This problem can be described as a jump Markov system (JMS) in which all signals are estimated simultaneously. In a JMS, states contain additional parameters to identify models. However, for superimposed event detection, the authors show that the underlying JMS-based particle-filtering method can be reduced to a standard Markov chain method without additional parameters. Numerical experiments using real-world sound processing data demonstrate the effectiveness of their approach.