BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Solvent effects"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modeling solvent effects on excitation energies for polyenes
    (2006) Li, Yan
    Excitation energies of polyenes in solution are about 0.3-0.4 eV lower than in the gas phase. Understanding the solvent effect is important to the design of low band gap conducting polymers. This thesis is to evaluate this solvent effect theoretically by comparing the first allowed vertical excitation energies of polyenes, oligothiophenes and oligopyrroles. Influences of theoretical levels and basis sets on the optimised geometries, the HOMO- LUMO gap, and the TDHF excitation energies are reviewed and compared with experimental data in the gas phase. To calculate excitation energies, six levels with Stevens-Basch-Krauss pseudopotentials in connection with polarized split valence basis set (CEP-31g* basis in Gaussian 03 package) are employed in this thesis, including the HOMO-LUMO gap, CIS, TDHF, TDDFT, CASSCF and CASPT2. Three methods to take solvent effects into account were tested: implicitly by using the polarized continuum model (PCM) method, explicitly by treating a solute-solvent cluster and the combination of both methods. In PCM, heptane is considered as the solvent. PCM can be applied at different theoretical levels. In the cluster model, four corresponding alkane molecules surrounding a solute molecule in a parallel orientation form the first solvation shell. Solvent effects are determined by whether a theoretical level can form an effectively bound cluster. The combination of both can yield a closest result to experimental data. Further, solvent effects of water are evaluated with PCM and clusters. TDHF and PCM are applied for larger systems like oligothiophenes and oligopyrroles.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback