Browsing by Subject "Solution quality"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access An effective model to decompose linear programs for parallel solution(Springer, 1996-08) Pınar, Ali; Aykanat, CevdetAlthough inherent parallelism in the solution of block angulax Linear Programming (LP) problems has been exploited in many research works, the literature that addresses decomposing constraint matrices into block angular form for parallel solution is very rare and recent. We have previously proposed hypergraph models, which reduced the problem to the hypergraph partitioning problem. However, the quality of the results reported were limited due to the hypergraph partitioning tools we have used. Very recently, multilevel graph partitioning heuristics have been proposed leading to very successful graph partitioning tools; Chaco and Metis. In this paper, we propose an effective graph model to decompose matrices into block angular form, which reduces the problem to the well-known graph partitioning by vertex separator problem. We have experimented the validity of our proposed model with various LP problems selected from NETLIB and other sources. The results are very attractive both in terms of solution quality and running times. © Springer-Verlag Berlin Heidelberg 1996.Item Open Access Multi-population parallel genetic algorithm using a new genetic representation for the euclidean traveling salesman problem(İstanbul Technical University, 2005) Kapanoğlu, M.; Koç, İ. O.; Kara, İ.; Aktürk, Mehmet SelimThis paper introduces a multi-population genetic algorithm (M-PPGA) using a new genetic representation, the kth-nearest neighbor representation, for Euclidean Traveling Salesman Problems. The proposed M-PPGA runs M greedy genetic algorithms on M separate populations, each with two new operators, intersection repairing and cheapest insert. The M-PPGA finds optimal or near optimal solutions by using a novel communication operator among individually converged populations. The algorithm generates high quality building blocks within each population; then, combines these blocks to build the optimal or near optimal solutions by means of the communication operator. The proposed M-PPGA outperforms the GAs that we know of as competitive with respect to running times and solution quality, over the considered test problems including the Turkey81.