Browsing by Subject "Soliton solutions"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access (2 + 1)-dimensional AKNS(−N) systems II(Elsevier BV, 2021-06) Gürses, Metin; Pekcan, AslıIn our previous work (Gürses and Pekcan, 2019, [40]) we started to investigate negative AKNS(−N) hierarchy in (2 + 1)-dimensions. We were able to obtain only the first three, N = 0, 1, 2, members of this hierarchy. The main difficulty was the nonexistence of the Hirota formulation of the AKNS(N) hierarchy for N ≥ 3. Here in this work we overcome this difficulty for N = 3, 4 and obtain Hirota bilinear forms of (2 + 1)-dimensional AKNS(−N) equations for these members. We study the local and nonlocal reductions of these systems of equations and obtain several new integrable local and nonlocal equations in (2 + 1)- dimensions. We also give one-, two-, and three-soliton solutions of the reduced equationsItem Open Access (2+1)-dimensional local and nonlocal reductions of the negative AKNS system: soliton solutions(Elsevier, 2018) Gürses, Metin; Pekcan, A.Wefirstconstructa(2+1)dimensionalnegativeAKNShierarchyandthenwegiveallpossiblelocaland(discrete)nonlocalreductionsoftheseequations.WefindHirotabilinearformsofthenegativeAKNShierarchyandgiveone-andtwo-solitonsolutions.ByusingthesolitonsolutionsofthenegativeAKNShierarchywefindone-solitonsolutionsofthelocalandnonlocalreducedequations.Item Open Access Integrable nonlocal reductions(Springer New York LLC, 2018) Gürses, Metin; Pekcan, A.We present some nonlocal integrable systems by using the Ablowitz-Musslimani nonlocal reductions. We first present all possible nonlocal reductions of nonlinear Schrödinger (NLS) and modified Korteweg-de Vries (mKdV) systems. We give soliton solutions of these nonlocal equations by using the Hirota method. We extend the nonlocal NLS equation to nonlocal Fordy-Kulish equations by utilizing the nonlocal reduction to the Fordy-Kulish system on symmetric spaces. We also consider the super AKNS system and then show that Ablowitz-Musslimani nonlocal reduction can be extended to super integrable equations. We obtain new nonlocal equations namely nonlocal super NLS and nonlocal super mKdV equations.Item Open Access Nonlocal modified KdV equations and their soliton solutions by Hirota Method(Elsevier, 2019) Gürses, Metin; Pekcan, A.We study the nonlocal modified Korteweg–de Vries (mKdV) equations obtained from AKNS scheme by Ablowitz–Musslimani type nonlocal reductions. We first find soliton solutions of the coupled mKdV system by using the Hirota direct method. Then by using the Ablowitz–Musslimani reduction formulas, we find one-, two-, and three-soliton solutions of nonlocal mKdV and nonlocal complex mKdV equations. The soliton solutions of these equations are of two types. We give one-soliton solutions of both types and present only first type of two- and three-soliton solutions. We illustrate our solutions by plotting their graphs for particular values of the parameters.Item Open Access Superposition of the coupled NLS and MKdV systems(Elsevier, 2019) Gürses, Metin; Pekcan, A.Superpositions of hierarchies of integrable equations are also integrable. The superposed equations, such as the Hirota equations in the AKNS hierarchy, cannot be considered as new integrable equations. Furthermore if one applies the Hirota bilinear method to these equations one obtains the same N-soliton solutions of the generating equation which differ only by the dispersion relations. Similar discussions can be made for the locally and nonlocally reduced equations as well. We give, as an example, AKNS system of equations in (1 + 1)-dimensions.