Browsing by Subject "Solar blind"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access High-performance solar-blind AlGaN Schottky photodiodes(Materials Research Society, 2003) Bıyıklı, Necmi; Kartaloglu, T.; Aytur, O.; Kimukin, I.; Özbay, EkmelHigh-performance solar-blind AlGaN-based Schottky photodiodes have been demonstrated. The detectors were fabricated on MOCVD-grown AlGaN/GaN heterostructures using a microwave-compatible fabrication process. Current-voltage, spectral responsivity, noise, and high-speed characteristics of the detectors were measured and analyzed. Dark currents lower than 1 pA at bias voltages as high as 30 V were obtained. True solar-blind detection was achieved with a cut-off wavelength lower than 266 nm. A peak device responsivity of 78 mA/W at 250 nm was measured under 15 V reverse bias. A visible rejection of more than 4 orders of magnitude was observed. The solar-blind photodiodes exhibited noise densities below the measurement setup noise floor of 3×10 -29 A 2/Hz around 10 KHz. High-speed measurements at the solar-blind wavelength of 267 nm resulted in 3-dB bandwidths as high as 870 MHz.Item Open Access High-performance solar-blind photodetectors based on AlxGa 1_xN heterostructures(IEEE, 2004) Özbay, Ekmel; Bıyıklı, Necmi; Kimukin, I.; Kartaloglu, T.; Tut, T.; Aytür, O.Design, fabrication, and characterization of high-performance AI xGa1-xN-based photodetectors for solar-blind applications are reported. AlxGa1-xN heterostructures were designed for Schottky. p-i-n, and metal-semicondnctor-metal (MSM) photodiodes. The solar-blind photodiode samples were fabricated using a microwave compatible fabrication process. The resulting devices exhibited extremely low dark currents. Below 3 fA, leakage currents at 6-V reverse bias were measured on p-i-n samples. The excellent current-voltage (I-V) characteristics led to a detectivity performance of 4.9×1014 cmHz1/2W -1. The MSM devices exhibited photoconductive gain, while Schottky and p-i-n samples displayed 0.09 and 0.11 A/W peak responsivity values at 267 and 261 nm, respectively. A visible rejection of 2×104 was achieved with Schottky samples. High-speed measurements at 267 nm resulted in fast pulse responses with greater than gigahertz bandwidths. The fastest devices were MSM photodiodes with a maximum 3-dB bandwidth of 5.4 GHz.