Browsing by Subject "Soft interfaces"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Formulation of the Reynolds equation on a time-dependent lubrication surface(Royal Society of London, 2016) Temizer, I.; Stupkiewicz, S.The Reynolds equation, which describes the lubrication effect arising through the interaction of two physical surfaces that are separated by a thin fluid film, is formulated with respect to a continuously evolving third surface that is described by a time-dependent curvilinear coordinate system. The proposed formulation essentially addresses lubrication mechanics at interfaces undergoing large deformations and a priori satisfies all objectivity requirements, neither of which are features of the classical Reynolds equation. As such, this formulation may be particularly suitable for non-stationary elastohydrodynamic lubrication problems associated with soft interfaces. The ability of the formulation to capture finite-deformation effects and the influence of the choice of the third surface are illustrated through analytical examples. © 2016 The Author(s).Item Open Access Tuning macroscopic sliding friction at soft contact interfaces: interaction of bulk and surface heterogeneities(Elsevier Ltd, 2016) Kılıç, K. İ.; Temizer, İ.Macroscopic frictional response of soft interfaces is strongly governed by the interaction of surface heterogeneities such as micro-texture features with bulk heterogeneities such as voids or inclusions beneath the highly deformable surface. This microscopic interaction manifests itself on the macroscale as an interface response that is reminiscent of stick-slip. Consequently, the accompanying macroscopic friction signal exhibits strong oscillations around a mean value, which itself significantly differs from its microscopic value due to finite deformations. In this work, a mechanism is proposed which enables the tuning of the macroscopic friction signal of soft interfaces. Specifically, it is demonstrated that optimally positioning subsurface particles in the vicinity of micro-texture features can significantly reduce observed oscillations, thereby allowing control of macroscopic sliding friction. © 2016 Elsevier Ltd