Browsing by Subject "Soft errors"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Micro-Architectural features as soft-error markers in embedded safety-critical systems: preliminary study(Institute of Electrical and Electronics Engineers Inc., 2023-07-12) Kasap, Deniz; Carpegna, A.; Savino, A.; Di Carlo, S.Radiation-induced soft errors are one of the most challenging issues in Safety Critical Real-Time Embedded System (SACRES) reliability, usually handled using different flavors of Double Modular Redundancy (DMR) techniques. This solution is becoming unaffordable due to the complexity of modern micro-processors in all domains. This paper addresses the promising field of using Artificial Intelligence (AI) based hardware detectors for soft errors. To create such cores and make them general enough to work with different software applications, micro-Architectural attributes are a fascinating option as candidate fault detection features. Several processors already track these features through dedicated Performance Monitoring Unit (PMU). However, there is an open question to understand to what extent they are enough to detect faulty executions. Exploiting the capability of gem5 to simulate real computing systems, perform fault injection experiments, and profile micro-Architectural attributes (i.e., gem5 Stats), this paper presents the results of a comprehensive analysis regarding the potential attributes to detect soft errors and the associated models that can be trained with these features.Item Open Access NS-SRAM: neighborhood solidarity SRAM for reliability enhancement of SRAM memories(IEEE, 2016-08-09) Alouani, I.; Ahangari, Hamzeh; Öztürk, Özcan; Niar, S.Technology shift and voltage scaling increased the susceptibility of Static Random Access Memories (SRAMs) to errors dramatically. In this paper, we present NS-SRAM, for Neighborhood Solidarity SRAM, a new technique to enhance error resilience of SRAMs by exploiting the adjacent memory bit data. Bit cells of a memory line are paired together in circuit level to mutually increase the static noise margin and critical charge of a cell. Unlike existing techniques, NS-SRAM aims to enhance both Bit Error Rate (BER) and Soft Error rate (SER) at the same time. Due to auto-adaptive joiners, each of the adjacent cells' nodes is connected to its counterpart in the neighbor bit. NS-SRAM enhances read-stability by increasing critical Read Static Noise Margin (RSNM), thereby decreasing faults when circuit operates under voltage scaling. It also increases hold-stability and critical charge to mitigate soft-errors. By the proposed technique, reliability of SRAM based structures such as cache memories and register files can drastically be improved with comparable area overhead to existing hardening techniques. Moreover it does not require any extra-memory, does not impact the memory effective size, and has no negative impact on performance. © 2016 IEEE.