Browsing by Subject "Sliding window"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fast processing techniques for accurate ultrasonic range measurements(Institute of Physics Publishing, 2000) Barshan, B.Four methods of range measurement for airborne ultrasonic systems - namely simple thresholding, curve-fitting, sliding-window, and correlation detection - are compared on the basis of bias error, standard deviation, total error, robustness to noise, and the difficulty/complexity of implementation. Whereas correlation detection is theoretically optimal, the other three methods can offer acceptable performance at much lower cost. Performances of all methods have been investigated as a function of target range, azimuth, and signal-to-noise ratio. Curve fitting, sliding window, and thresholding follow correlation detection in the order of decreasing complexity. Apart from correlation detection, minimum bias and total error is most consistently obtained with the curve-fitting method. On the other hand, the sliding-window method is always better than the thresholding and curve-fitting methods in terms of minimizing the standard deviation. The experimental results are in close agreement with the corresponding simulation results. Overall, the three simple and fast processing methods provide a variety of attractive compromises between measurement accuracy and system complexity. Although this paper concentrates on ultrasonic range measurement in air, the techniques described may also find application in underwater acoustics.Item Open Access On erasure correction coding for streaming(IEEE, 2012) Tekin, Ömer Faruk; Ho, T.; Yao, H.; Jaggi, S.We consider packet erasure correction coding for a streaming system where specific information needs to be decoded by specific deadlines, in order to ensure uninterrupted playback at the receiver. In our previous work [1], we gave a capacity-achieving code construction for the case of a fixed number of erasures. In this work, we consider a sliding window erasure pattern where the number of erasures within windows of size above some threshold is upper bounded by a fraction of the window size, modeling a constraint on burstiness of the channel. We lower bound the rates achievable by our previous code construction as a fraction of the capacity region, which approaches to one as the window size threshold and the initial playout delay increase simultaneously.