BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Single wall"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    General strategy for fabrication of ordered one dimensional inorganic structures by electrospinning: structural evolution from belt to solid via hollow tubes
    (Wiley-VCH Verlag GmbH & Co. KGaA, 2020-12-23) Senthamizhan, Anitha; Balusamy, Brabu; Çelebioğlu, Aslı; Uyar, T.
    Super-structured hollow materials are the subject of intense research due to their attracting properties and diverse applications. Despite their significance, it still remains a crucial challenge to develop a simple and well-organized method to prepare the hollow tubes with controlled architectures. Herein, a general route to prepare structurally well-defined 1D zinc oxide (ZnO) structures by a single-spinneret electrospinning method coupled with thermal treatment is demonstrated for the first time and subsequently designated to identify high-performance materials for catalytic application. Two critical factors including tailoring the precursor amount and colloidal-stability of the precursor play critical role in tuning the structure precisely. The careful optimization of processing conditions enables chronological structural evolution from tubular to solid fiber structures composed of nanograins. These ZnO complex hollow structures showcase excellent photocatalytic performance; single nanograined wall hollow tubes manifest the high-catalytic performance over other samples with remarkable cycling stability. Benefitting from fabrication adaptability, different types of metal oxide hollow tubes are prepared that indicates the generality of the method. The proposed method postulates new insights for the development of electrospun hollow-structured fibers in a simple, cost-effective, and industrially feasible manner which holds apparent potential in many sectors.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback