Browsing by Subject "Single mode"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access 10-W, 156-MHz all-fiber-integrated Er-Yb-doped fiber laser-amplifier system(Optical Society of America, 2012) Pavlov, Ihor; İlbey, Emrah; Dülgergil, Ebru; İlday, Fatih ÖmerWe demonstrate all-fiber, high-power chirped-pulse-amplifier system, operating at 1550 nm. 156-MHz soliton oscillator seeds a two-stage single-mode amplifier with output power of 10 W. After external compression, pulse duration is 0.6 ps. © 2012 Optical Society of America.Item Open Access 3.5-W, femtosecond chirped pulse amplification fiber laser system at 1560 nm(IEEE, 2017) Elahi, Parviz; Li, Huihui; İlday, Fatih ÖmerWe report a single-mode, 42 MHz, 3.5-W average power chirped pulse amplification fiber laser system operating at 1560 nm. The laser system comprises a dispersion-managed mode-locked oscillator and twoamplifier stages. The output pulses are compressed to 180 fs by using two diffraction gratings.Item Open Access Silicon oxynitride layers for applications in optical waveguides(2000-09) Ay, FeridunSilicon oxynitride layers, aimed to serve as the core material for optical waveguides operating at l.55µm, v.-ere grown by a PECVD technique using SiH4, N20, and NH3 as precursor gases. The films were deposited at 350 °c, 13.56 MHz RF frequency, and 1 Torr pressure by varying the flow rates of N20 and l\"H3 gases. The resulting refractirn indices of the layers varied between 1.47 and 2.0. The compositional properties of the layers were analyzed by FTIR and ATR infrared spectroscopy techniques. A special attention was given to the N-H bond stretching absorption at 3300-3400 cm-1, since its first overtone is known to be the main cause of the optical absorption at l.55µm. An annealing study was performed in order to reduce or eliminate this bonding type. For the annealed samples the corresponding concentration was strongly reduced as verified by FTIR transmittance and ATR methods. A correlation between the N-H concentration and absorption loss was verified for silicon oxynitride slab waveguides. Moreover, a single mode waveguide with silicon oxynitride core layer was fabricated. lts absorption and insertion loss values were determined by butt-coupling method, resulting in low loss waveguides.