Browsing by Subject "Single allocation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Allocation Strategies in Hub Networks(Elsevier, 2011-06-11) Yaman, H.In this paper, we study allocation strategies and their effects on total routing costs in hub networks. Given a set of nodes with pairwise traffic demands, the p-hub median problem is the problem of choosing p nodes as hub locations and routing traffic through these hubs at minimum cost. This problem has two versions; in single allocation problems, each node can send and receive traffic through a single hub, whereas in multiple allocation problems, there is no such restriction and a node may send and receive its traffic through all p hubs. This results in high fixed costs and complicated networks. In this study, we introduce the r-allocation p-hub median problem, where each node can be connected to at most r hubs. This new problem generalizes the two versions of the p-hub median problem. We derive mixed-integer programming formulations for this problem and perform a computational study using well-known datasets. For these datasets, we conclude that single allocation solutions are considerably more expensive than multiple allocation solutions, but significant savings can be achieved by allowing nodes to be allocated to two or three hubs rather than one. We also present models for variations of this problem with service quality considerations, flow thresholds, and non-stop service.Item Open Access Benders decomposition algorithms for two variants of the single allocation hub location problem(Springer, 2019) Ghaffarinasab, N.; Kara, Bahar Y.The hub location problem (HLP) is a special type of the facility location problem with numerous applications in the airline industry, postal services, and computer and telecommunications networks. This paper addresses two basic variants of the HLP, namely the uncapacitated single allocation hub location problem (USAHLP) and the uncapacitated single allocation p-hub median problem (USAp HMP). Exact solution procedures based on Benders decomposition algorithm are proposed to tackle large sized instances of these problems. The standard Benders decomposition algorithm is enhanced through implementation of several algorithmic refinements such as using a new cut disaggregation scheme, generating strong optimality cuts, and an efficient algorithm to solve the dual subproblems. Furthermore, a modern implementation of the algorithm is used where a single search tree is established for the problem and Benders cuts are successively added within a branch-and-cut framework. Extensive computational experiments are conducted to examine the efficiency of the proposed algorithms. We have been able to solve all the instances of the problems from all three main data sets of the HLP to optimality in reasonable computational times.Item Open Access Spatial analysis of single allocation hub location problems(Springer, 2016) Peker, M.; Kara, B. Y.; Campbell, J. F.; Alumur, S. A.Hubs are special facilities that serve as switching, transshipment and sorting nodes in many-to-many distribution systems. Flow is consolidated at hubs to exploit economies of scale and to reduce transportation costs between hubs. In this article, we first identify general features of optimal hub locations for single allocation hub location problems based on only the fundamental problem data (demand for travel and spatial locations). We then exploit this knowledge to develop a straightforward heuristic methodology based on spatial proximity of nodes, dispersion and measures of node importance to delineate subsets of nodes likely to contain optimal hubs. We then develop constraints for these subsets for use in mathematical programming formulations to solve hub location problems. Our methodology can also help narrow an organization’s focus to concentrate on more detailed and qualitative analyses of promising potential hub locations. Results document the value of including both demand magnitude and centrality in measuring node importance and the relevant tradeoffs in solution quality and time.