Browsing by Subject "Signal interference"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Accurate modeling of metamaterials with MLFMA(ESA Publications, 2006) Ergül, Özgür; Ünal, Alper; Gürel, LeventElectromagnetic modelling of large metamaterial (MM) structures employing multilevel fast multipole algorithm (MLFMA) is reported. MMs are usually constructed by periodically embedding unit cells, such as split-ring resonators (SRRs), into a host medium. Without utilizing any homogenization techniques, we accurately model large numbers of unit cells that translate into very large computational problems. By considering all of the electromagnetic interactions, the resulting dense matrix equations are solved iteratively with the accelerated matrix-vector products by MLFMA. To increase the efficiency, we also employ parallel computing in the solutions of large SRR problems.Item Open Access Cooperative precoding and artificial noise design for security over interference channels(Institute of Electrical and Electronics Engineers Inc., 2015) Özçelikkale, A.; Duman, T. M.We focus on linear precoding strategies as a physical layer technique for providing security in Gaussian interference channels. We consider an artificial noise aided scheme where transmitters may broadcast noise in addition to data in order to confuse eavesdroppers. We formulate the problem of minimizing the total mean-square error at the legitimate receivers while keeping the error values at the eavesdroppers above target levels. This set-up leads to a non-convex problem formulation. Hence, we propose a coordinate block descent technique based on a tight semi-definite relaxation and design linear precoders as well as spatial distribution of the artificial noise. Our results illustrate that artificial noise can provide significant performance gains especially when the secrecy levels required at the eavesdroppers are demanding. © 1994-2012 IEEE.Item Open Access Downlink beamforming under individual SINR and per antenna power constraints(IEEE, 2007-08) Yazarel, Y. K.; Aktaş, DefneIn this paper we consider the problem of finding the optimum beamforming vectors for the downlink of a multiuser system, where there are individual signal to interference plus noise ratio (SINR) targets for each user. Majority of the previous work on this problem assumed a total power constraint on the base stations. However, since each transmit antenna is limited by the amount of power it can transmit due to the limited linear region of the power amplifliers, a more realistic constraint is to place a limit on the per antenna power. In a recent work, Yu and Lan proposed an iterative algorithm for computing the optimum beamforming vectors minimizing the power margin over all antennas under individual SINR and per antenna power constraints. However, from a system designer point of view, it may be more desirable to minimize the total transmit power rather than minimizing the power margin, especially when the system is not symmetric. Reformulating the transmitter optimization problem to minimize the total transmit power subject to individual SINR constraints on the users and per antenna power constraints on the base stations, the algorithm proposed by Yu and Lan is modified. Performance of the modified algorithm is compared with existing methods for various cellular array scenarios. ©2007 IEEE.Item Open Access Implementing the Han-Kobayashi scheme using low density parity check codes over Gaussian interference channels(Institute of Electrical and Electronics Engineers Inc., 2015) Sharifi S.; Tanc, A. K.; Duman, T. M.We focus on Gaussian interference channels (GICs) and study the Han-Kobayashi coding strategy for the two-user case with the objective of designing implementable (explicit) channel codes. Specifically, low-density parity-check codes are adopted for use over the channel, their benefits are studied, and suitable codes are designed. Iterative joint decoding is used at the receivers, where independent and identically distributed channel adapters are used to prove that log-likelihood-ratios exchanged among the nodes of the Tanner graph enjoy symmetry when BPSK or QPSK with Gray coding is employed. This property is exploited in the proposed code optimization algorithm adopting a random perturbation technique. Code optimization and convergence threshold computations are carried out for different GICs employing finite constellations by tracking the average mutual information. Furthermore, stability conditions for the admissible degree distributions under strong and weak interference levels are determined. Via examples, it is observed that the optimized codes using BPSK or QPSK with Gray coding operate close to the capacity boundary for strong interference. For the case of weak interference, it is shown that nontrivial rate pairs are achievable via the newly designed codes, which are not possible by single user codes with time sharing. Performance of the designed codes is also studied for finite block lengths through simulations of specific codes picked with the optimized degree distributions with random constructions, where, for one instance, the results are compared with those of some structured designs. © 1972-2012 IEEE.Item Open Access On LDPC codes for Gaussian interference channels(IEEE, 2014) Sharifi, S.; Tanç, A. K.; Duman, Tolga M.In this paper, we focus on the two-user Gaussian interference channel (GIC), and study the Han-Kobayashi (HK) coding/decoding strategy with the objective of designing low-density parity-check (LDPC) codes. A code optimization algorithm is proposed which adopts a random perturbation technique via tracking the average mutual information. The degree distribution optimization and convergence threshold computation are carried out for strong and weak interference channels, employing binary phase-shift keying (BPSK). Under strong interference, it is observed that optimized codes operate close to the capacity boundary. For the case of weak interference, it is shown that via the newly designed codes, a nontrivial rate pair is achievable, which is not attainable by single user codes with time-sharing. Performance of the designed LDPC codes are also studied for finite block lengths through simulations of specific codes picked from the optimized degree distributions.Item Open Access Optimal filtering in fractional Fourier domains(IEEE, 1995) Kutay, M. Alper; Onural, Levent; Özaktaş Haldun M.; Arıkan, OrhanThe ordinary Fourier transform is suited best for analysis and processing of time-invariant signals and systems. When we are dealing with time-varying signals and systems, filtering in fractional Fourier domains might allow us to estimate signals with smaller minimum-mean-square error (MSE). We derive the optimal fractional Fourier domain filter that minimizes the MSE for given non-stationary signal and noise statistics, and time-varying distortion kernel. We present an example for which the MSE is reduced by a factor of 50 as a result of filtering in the fractional Fourier domain, as compared to filtering in the conventional Fourier or time domains. We also discuss how the fractional Fourier transformation can be computed in O(N log N) time, so that the improvement in performance is achieved with little or no increase in computational complexity.