Browsing by Subject "Signal distortion"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Estimation of depth fields suitable for video compression based on 3-D structure and motion of objects(Institute of Electrical and Electronics Engineers, 1998-06) Alatan, A. A.; Onural, L.Intensity prediction along motion trajectories removes temporal redundancy considerably in video compression algorithms. In three-dimensional (3-D) object-based video coding, both 3-D motion and depth values are required for temporal prediction. The required 3-D motion parameters for each object are found by the correspondence-based E-matrix method. The estimation of the correspondences - two-dimensional (2-D) motion field - between the frames and segmentation of the scene into objects are achieved simultaneously by minimizing a Gibbs energy. The depth field is estimated by jointly minimizing a defined distortion and bitrate criterion using the 3-D motion parameters. The resulting depth field is efficient in the rate-distortion sense. Bit-rate values corresponding to the lossless encoding of the resultant depth fields are obtained using predictive coding; prediction errors are encoded by a Lempel-Ziv algorithm. The results are satisfactory for real-life video scenes.Item Open Access Exact diffraction calculation from fields specified over arbitrary curved surfaces(Elsevier, 2011-07-30) Esmer, G. B.; Onural, L.; Özaktaş, Haldun M.Calculation of the scalar diffraction field over the entire space from a given field over a surface is an important problem in computer generated holography. A straightforward approach to compute the diffraction field from field samples given on a surface is to superpose the emanated fields from each such sample. In this approach, possible mutual interactions between the fields at these samples are omitted and the calculated field may be significantly in error. In the proposed diffraction calculation algorithm, mutual interactions are taken into consideration, and thus the exact diffraction field can be calculated. The algorithm is based on posing the problem as the inverse of a problem whose formulation is straightforward. The problem is then solved by a signal decomposition approach. The computational cost of the proposed method is high, but it yields the exact scalar diffraction field over the entire space from the data on a surface.Item Open Access Joint source-channel coding and guessing with application to sequential decoding(Institute of Electrical and Electronics Engineers, 1998-09) Arikan, E.; Merhav, N.We extend our earlier work on guessing subject to distortion to the joint source-channel coding context. We consider a system in which there is a source connected to a destination via a channel and the goal is to reconstruct the source output at the destination within a prescribed distortion level with respect to (w.r.t.) some distortion measure. The decoder is a guessing decoder in the sense that it is allowed to generate successive estimates of the source output until the distortion criterion is met. The problem is to design the encoder and the decoder so as to minimize the average number of estimates until successful reconstruction. We derive estimates on nonnegative moments of the number of guesses, which are asymptotically tight as the length of the source block goes to infinity. Using the close relationship between guessing and sequential decoding, we give a tight lower bound to the complexity of sequential decoding in joint source-channel coding systems, complementing earlier works by Koshelev and Hellman. Another topic explored here is the probability of error for list decoders with exponential list sizes for joint source-channel coding systems, for which we obtain tight bounds as well. It is noteworthy that optimal performance w.r.t. the performance measures considered here can be achieved in a manner that separates source coding and channel coding.Item Open Access Optimal filtering in fractional Fourier domains(IEEE, 1995) Kutay, M. Alper; Onural, Levent; Özaktaş Haldun M.; Arıkan, OrhanThe ordinary Fourier transform is suited best for analysis and processing of time-invariant signals and systems. When we are dealing with time-varying signals and systems, filtering in fractional Fourier domains might allow us to estimate signals with smaller minimum-mean-square error (MSE). We derive the optimal fractional Fourier domain filter that minimizes the MSE for given non-stationary signal and noise statistics, and time-varying distortion kernel. We present an example for which the MSE is reduced by a factor of 50 as a result of filtering in the fractional Fourier domain, as compared to filtering in the conventional Fourier or time domains. We also discuss how the fractional Fourier transformation can be computed in O(N log N) time, so that the improvement in performance is achieved with little or no increase in computational complexity.Item Open Access Piecewise-planar 3D reconstruction in rate-distortion sense(IEEE, 2007-05) İmre, E.; Güdükbay, Uğur; Alatan, A. A.In this paper, a novel rate-distortion optimization inspired 3D piecewise-planar reconstruction algorithm is proposed. The algorithm refines a coarse 3D triangular mesh, by inserting vertices in a way to minimize the intensity difference between an image and its prediction. The preliminary experiments on synthetic and real data indicate the validity of the proposed approach.Item Open Access Rate-distortion based piecewise planar 3D scene geometry representation(IEEE, 2006) Imre, E.; Alatan, A.A.; Güdükbay, UğurThis paper proposes a novel 3D piecewise planar reconstruction algorithm, to build a 3D scene representation that minimizes the intensity error between a particular frame and its prediction. 3D scene geometry is exploited to remove the visual redundancy between frame pairs for any predictive coding scheme. This approach associates the rate increase with the quality of representation, and is shown to be rate-distortion efficient by the experiments. © 2007 IEEE.Item Open Access Rate-distortion optimized layered stereoscopic video streaming with raptor codes(IEEE, 2007) Tan, A. Serdar; Aksay, A.; Bilen, C.; Bozdağı-Akar, G.; Arıkan, ErdalA near optimal streaming system for stereoscopic video is proposed. Initially, the stereoscopic video is separated into three layers and the approximate analytical model of the Rate-Distortion (RD) curve of each layer is calculated from sufficient number of rate and distortion samples. The analytical modeling includes the interdependency of the defined layers. Then, the analytical models are used to derive the optimal source encoding rates for a given channel bandwidth. The distortion in the quality of the stereoscopic video that is caused by losing a NAL unit from the defined layers is estimated to minimize the average distortion of a single NAL unit loss. The minimization is performed over protection rates allocated to each layer. Raptor codes are utilized as the error protection scheme due to their novelty and suitability in video transmission. The layers are protected unequally using Raptor codes according to the parity ratios allocated to the layers. Comparison of the defined scheme with two other protection allocation schemes is provided via simulations to observe the quality of stereoscopic video.