BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "SiN passivation"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Negative differential resistance observation and a new fitting model for electron drift velocity in GaN-based heterostructures
    (Institute of Electrical and Electronics Engineers, 2018) Atmaca, G.; Narin, P.; Kutlu, E.; Malin, T. V.; Mansurov, V. G.; Zhuravlev, K. S.; Lişesivdin, S. B.; Özbay, Ekmel
    The aim of this paper is an investigation of electric field-dependent drift velocity characteristics for Al0.3Ga0.7N/AlN/GaN heterostructures without and with in situ Si3N4 passivation. The nanosecond-pulsed current-voltage ( {I}-{V} ) measurements were performed using a 20-ns applied pulse. Electron drift velocity depending on the electric field was obtained from the {I}-{V} measurements. These measurements show that a reduction in peak electron velocity from \text {2.01} \times \text {10}^{\text {7}} to \text {1.39} \times \text {10}^{\text {7}} cm/s after in situ Si3N4 passivation. Also, negative differential resistance regime was observed which begins at lower fields with the implementation of in situ Si3N4 passivation. In our samples, the electric field dependence of drift velocity was measured over 400 kV/cm due to smaller sample lengths. Then, a well-known fitting model was fitted to our experimental results. This fitting model was improved in order to provide an adequate description of the field dependence of drift velocity. It gives reasonable agreement with the experimental drift velocity data up to 475 kV/cm of the electric field and could be used in the device simulators.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback