BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Shortfall risk"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Dual representations for systemic risk measures
    (Springer, 2020) Ararat, Çağın; Rudloff, B.
    The financial crisis showed the importance of measuring, allocating and regulating systemic risk. Recently, the systemic risk measures that can be decomposed into an aggregation function and a scalar measure of risk, received a lot of attention. In this framework, capital allocations are added after aggregation and can represent bailout costs. More recently, a framework has been introduced, where institutions are supplied with capital allocations before aggregation. This yields an interpretation that is particularly useful for regulatory purposes. In each framework, the set of all feasible capital allocations leads to a multivariate risk measure. In this paper, we present dual representations for scalar systemic risk measures as well as for the corresponding multivariate risk measures concerning capital allocations. Our results cover both frameworks: aggregating after allocating and allocating after aggregation. As examples, we consider the aggregation mechanisms of the Eisenberg–Noe model as well as those of the resource allocation and network flow models.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Set-valued shortfall and divergence risk measures
    (World Scientific Publishing, 2017) Ararat, C.; Hamel, A. H.; Rudloff, B.
    Risk measures for multivariate financial positions are studied in a utility-based framework. Under a certain incomplete preference relation, shortfall and divergence risk measures are defined as the optimal values of specific set minimization problems. The dual relationship between these two classes of multivariate risk measures is constructed via a recent Lagrange duality for set optimization. In particular, it is shown that a shortfall risk measure can be written as an intersection over a family of divergence risk measures indexed by a scalarization parameter. Examples include set-valued versions of the entropic risk measure and the average value at risk. As a second step, the minimization of these risk measures subject to trading opportunities is studied in a general convex market in discrete time. The optimal value of the minimization problem, called the market risk measure, is also a set-valued risk measure. A dual representation for the market risk measure that decomposes the effects of the original risk measure and the frictions of the market is proved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback