Browsing by Subject "Shelter location"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Compromising system and user interests in shelter location and evacuation planning(Elsevier Ltd, 2015) Bayram V.; Tansel, B.T.; Yaman H.Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority's point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness. © 2014 Elsevier Ltd.Item Open Access Nonlinear mixed integer programming models and algorithms for fair and efficient large scale evacuation planning(2015-07) Bayram, VedatShelters are safe facilities that protect a population from possible damaging effects of a disaster. Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority's point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the ow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the trade-of between efficiency and fairness. Disasters are uncertain events. Related studies and real-life practices show that a significant uncertainty regarding the evacuation demand and the impact of the disaster on the infrastructure exists. The second model we propose is a scenario-based two-stage stochastic evacuation planning model that optimally locates shelter sites and that assigns evacuees to shelters and paths to minimize the expected total evacuation time, under uncertainty. The model considers the uncertainty in the evacuation demand and the disruption in the road network and shelter sites. We present a case study for an impending earthquake in Istanbul, Turkey. We compare the performance of the stochastic programming solutions to solutions based on single scenarios and mean values. We also propose an exact algorithm based on Benders decomposition to solve the stochastic problem. To the best of our knowledge, ours is the first algorithm that uses duality results for second order cone programming in a Benders decomposition setting. We solve practical size problems with up to 1000 scenarios in moderate CPU times. We investigate methods such as employing a multi-cut strategy, deriving pareto-optimal cuts, using a reduced primal subproblem and preemptive priority multiobjective program to enhance the proposed algorithm. Computational results confirm the efficiency of our algorithm. This research is supported by TUBITAK, The Scientific and Technological Research Council of Turkey with project number 213M434.Item Open Access Shelter location and evacuation route assignment under uncertainty: a benders decomposition approach(INFORMS Inst.for Operations Res.and the Management Sciences, 2018) Bayram, V.; Yaman, HandeShelters are safe facilities that protect a population from possible damaging effects of a disaster. For that reason, shelter location and traffic assignment decisions should be considered simultaneously for an efficient evacuation plan. In addition, as it is very difficult to anticipate the exact place, time, and scale of a disaster, one needs to take into account the uncertainty in evacuation demand, the disruption/degradation of evacuation road network structure, and the disruption in shelters. In this study, we propose an exact algorithm based on Benders decomposition to solve a scenario-based two-stage stochastic evacuation planning model that optimally locates shelters and that assigns evacuees to shelters and routes in an efficient and fair way to minimize the expected total evacuation time. The second stage of the model is a second-order cone programming problem, and we use duality results for second-order cone programming in a Benders decomposition setting. We solve practical-size problems with up to 1,000 scenarios in moderate CPU times. We investigate methods such as employing a multicut strategy, deriving Pareto-optimal cuts, and using a preemptive priority multiobjective program to enhance the proposed algorithm. We also use a cutting plane algorithm to solve the dual subproblem since it contains a constraint for each possible path. Computational results confirm the efficiency of our algorithms.Item Open Access A stochastic programming approach for Shelter location and evacuation planning(EDP Sciences, 2018) Bayram, V.; Yaman, HandeShelter location and traffic allocation decisions are critical for an efficient evacuation plan. In this study, we propose a scenario-based two-stage stochastic evacuation planning model that optimally locates shelter sites and that assigns evacuees to nearest shelters and to shortest paths within a tolerance degree to minimize the expected total evacuation time. Our model considers the uncertainty in the evacuation demand and the disruption in the road network and shelter sites. We present a case study for a potential earthquake in Istanbul. We compare the performance of the stochastic programming solutions to solutions based on single scenarios and mean values