Browsing by Subject "Shape from specular flow"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effects of surface reflectance on local second order shape estimation in dynamic scenes(Elsevier Ltd, 2015) Dövencioğlu, D.N.; Wijntjes, M.W.A.; Ben-Shahar O.; Doerschner, K.In dynamic scenes, relative motion between the object, the observer, and/or the environment projects as dynamic visual information onto the retina (optic flow) that facilitates 3D shape perception. When the object is diffusely reflective, e.g. a matte painted surface, this optic flow is directly linked to object shape, a property found at the foundations of most traditional shape-from-motion (SfM) schemes. When the object is specular, the corresponding specular flow is related to shape curvature, a regime change that challenges the visual system to determine concurrently both the shape and the distortions of the (sometimes unknown) environment reflected from its surface. While human observers are able to judge the global 3D shape of most specular objects, shape-from-specular-flow (SFSF) is not veridical. In fact, recent studies have also shown systematic biases in the perceived motion of such objects. Here we focus on the perception of local shape from specular flow and compare it to that of matte-textured rotating objects. Observers judged local surface shape by adjusting a rotation and scale invariant shape index probe. Compared to shape judgments of static objects we find that object motion decreases intra-observer variability in local shape estimation. Moreover, object motion introduces systematic changes in perceived shape between matte-textured and specular conditions. Taken together, this study provides a new insight toward the contribution of motion and surface material to local shape perception. © 2015 The Authors.Item Open Access Specular motion and 3D shape estimation(Association for Research in Vision and Ophthalmology Inc., 2017) Dövencioğlu, D. N.; Ben-Shahar, O.; Barla, P.; Doerschner, K.Dynamic visual information facilitates three-dimensional shape recognition. It is still unclear, however, whether the motion information generated by moving specularities across a surface is congruent to that available from optic flow produced by a matte-textured shape. Whereas the latter is directly linked to the firstorder properties of the shape and its motion relative to the observer, the specular flow, the image flow generated by a specular object, is less sensitive to the object's motion and is tightly related to second-order properties of the shape. We therefore hypothesize that the perceived bumpiness (a perceptual attribute related to curvature magnitude) is more stable to changes in the type of motion in specular objects compared with their matte-textured counterparts. Results from two twointerval forced-choice experiments in which observers judged the perceived bumpiness of perturbed spherelike objects support this idea and provide an additional layer of evidence for the capacity of the visual system to exploit image information for shape inference. © 2017 The Authors.