BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Shadowing"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An online adaptive cooperation scheme for spectrum sensing based on a second-order statistical method
    (Institute of Electrical and Electronics Engineers, 2012) Yarkan S.; Töreyin, B. U.; Qaraqe, K. A.; Çetin, A. Enis
    Spectrum sensing is one of the most important features of cognitive radio (CR) systems. Although spectrum sensing can be performed by a single CR, it is shown in the literature that cooperative techniques, including multiple CRs/sensors, improve the performance and reliability of spectrum sensing. Existing cooperation techniques usually assume a static communication scenario between the unknown source and sensors along with a fixed propagation environment class. In this paper, an online adaptive cooperation scheme is proposed for spectrum sensing to maintain the level of sensing reliability and performance under changing channel and environmental conditions. Each cooperating sensor analyzes second-order statistics of the received signal, which undergoes both correlated fast and slow fading. Autocorrelation estimation data from sensors are fused together by an adaptive weighted linear combination at the fusion center. Weight update operation is performed online through the use of orthogonal projection onto convex sets. Numerical results show that the performance of the proposed scheme is maintained for dynamically changing characteristics of the channel between an unknown source and sensors, even under different physical propagation environments. In addition, it is shown that the proposed cooperative scheme, which is based on second-order detectors, yields better results compared with the same fusion mechanism that is based on conventional energy detectors.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Power adaptation for cognitive radio systems under an average sinr loss constraint in the absence of path loss information
    (Kluwer Academic Publishers, 2014) Dulek, B.; Gezici, Sinan; Sawai, R.; Kimura, R.
    An upper bound is derived on the capacity of a cognitive radio system by considering the effects of path loss and log-normal shadowing simultaneously for a single-cell network. Assuming that the cognitive radio is informed only of the shadow fading between the secondary (cognitive) transmitter and primary receiver, the capacity is achieved via the water-filling power allocation strategy under an average primary signal to secondary interference plus noise ratio loss constraint. Contrary to the perfect channel state information requirement at the secondary system (SS), the transmit power control of the SS is accomplished in the absence of any path loss estimates. For this purpose, a method for estimating the instantaneous value of the shadow fading is also presented. A detailed analysis of the proposed power adaptation strategy is conducted through various numerical simulations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Random access over wireless links: optimal rate and activity probability selection
    (2017-07) Karakoç, Nurullah
    Due to the rapidly increasing number of devices in wireless networks with the proliferation of applications based on new technologies such as machine to machine communications and Internet of Things, there is a growing interest in the random access schemes as they provide a simple means of channel access. To this end, various schemes have been proposed based on the ALOHA protocol to increase the e ciency of the medium access control layer over the last decade. On the other hand, physical layer aspects of random access networks have received relatively limited attention, and there is a need to consider optimal use of the underlying physical layer properties especially for transmission over wireless channels. In this thesis, we study uncoordinated random access schemes over wireless fading channels where each user independently decides whether to send a packet or not to a common receiver at any given time slot. To characterize the system throughput, i.e., the expected sum-rate, an information theoretic formulation is developed. We consider two scenarios: classical slotted ALOHA, where no multiuser detection (MUD) capability is available and slotted ALOHA with MUD. Our main contribution is that the optimal rates and the channel activity probabilities can be characterized as a function of the user distances to the receiver to maximize the system throughput in each case (more precisely, as a function of the average signal to noise ratios of the users). We use Rayleigh fading as our main channel model, however, we also study the cases where log-normal shadowing is observed along with small scale fading. Our proposed optimal rate selection schemes o er signi cant increase in expected system throughput compared to the same rate approach commonly used in the literature. In addition to the overall throughput optimization, the issue of fairness among users is also investigated and solutions which guarantee a minimum amount of individual throughput are developed. We also design systems with limited individual outage probabilities of the users for increased energy e ciency and reduced delay. All of these analytical works are supported with detailed numerical examples, and the performance of the proposed methods are evaluated.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback