Browsing by Subject "Sex Distribution"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effect of patient sex on white matter alterations in unilateral medial temporal lobe epilepsy with hippocampal sclerosis assessed by diffusion tensor imaging(2013) Oguz, K.K.; Tezer I.; Sanverdi, E.; Has, A.C.; Bilginer, B.; Dolgun, A.; Saygi, S.BACKGROUND AND PURPOSE: Studies shows ictal behavior and symptoms are affected by patient sex in temporal lobe epilepsy. The purpose of our study was to determine whether alterations in the WM as assessed by DTI display different patterns in male and female patients with unilateral HS. MATERIALS AND METHODS: Patients with unilateral HS were categorized as women with right HS ( n=12), men with right HS ( n=10), women with left HS ( n=12), and men with left HS ( n=10). DTI of the brain along 64 noncollinear directions was obtained from 44 patients and 37 sex-matched control participants. We used TBSS to analyze whole-brain WM. Regions with significant changes of FA and MD, and their mean FA, MD, total number of significant voxels, and asymmetry indices were determined for each group. RESULTS: All groups showed bilateral and extensive reductions of FA and elevated MD in the WM, more prominent ipsilateral to the affected hippocampus. The total number of voxels with decreased FA in patients compared with that of control participants was higher in women with right HS (24,727 vs 5,459) and in men with left HS (27,332 vs 14,013) than in their counterparts. Changes in MD associated with right HS were more extensive in both men and women (right vs left HS, women: 16,926 vs 5,458; men: 5,389 vs 4,764) than in those with left HS. In patients with right HS, the ipsilateral cingulum, uncinate fasciculus, internal and external capsules, and right acoustic radiation were involved extensively in women. CONCLUSIONS: Women and men showed different patterns in extent of WM alterations associated with HS.Item Open Access Human genetic and immunological determinants of critical COVID-19 pneumonia(Springer Nature, 2022-03-24) Zhang, Qian; Bastard, Paul; Karbuz, Adem; Gervais, Adrian; Tayoun, Ahmad Abou; Aiuti, Alessandro; Belot, Alexandre; Bolze, Alexandre; Gaudet, Alexandre; Bondarenko, Anastasiia; Liu, Zhiyong; Spaan, András N.; Guennoun, Andrea; Arias, Andres Augusto; Planas, Anna M.; Sediva, Anna; Shcherbina, Anna; Neehus, Anna-Lena; Puel, Anne; Froidure, Antoine; Novelli, Antonio; Parlakay, Aslınur Özkaya; Pujol, Aurora; Yahşi, Aysun; Gülhan, Belgin; Bigio, Benedetta; Boisson, Bertrand; Drolet, Beth A.; Franco, Carlos Andres Arango; Flores, Carlos; Rodríguez-Gallego, Carlos; Prando, Carolina; Biggs, Catherine M.; Luyt, Charles-Edouard; Dalgard, Clifton L.; O’Farrelly, Cliona; Matuozzo, Daniela; Dalmau, David; Perlin, David S.; Mansouri, Davood; van de Beek, Diederik; Vinh, Donald C.; Dominguez-Garrido, Elena; Hsieh, Elena W. Y.; Erdeniz, Emine Hafize; Jouanguy, Emmanuelle; Şevketoglu, Esra; Talouarn, Estelle; Quiros-Roldan, Eugenia; Andreakos, Evangelos; Husebye, Eystein; Alsohime, Fahad; Haerynck, Filomeen; Casari, Giorgio; Novelli, Giuseppe; Aytekin, Gökhan; Morelle, Guillaume; Alkan, Gulsum; Bayhan, Gulsum Iclal; Feldman, Hagit Baris; Su, Helen C.; von Bernuth, Horst; Resnick, Igor; Bustos, Ingrid; Meyts, Isabelle; Migeotte, Isabelle; Tancevski, Ivan; Bustamante, Jacinta; Fellay, Jacques; El Baghdadi, Jamila; Martinez-Picado, Javier; Casanova, Jean-Laurent; Rosain, Jeremie; Manry, Jeremy; Chen, Jie; Christodoulou, John; Bohlen, Jonathan; Franco, José Luis; Li, Juan; Anaya, Juan Manuel; Rojas, Julian; Ye, Junqiang; Uddin, K. M. Furkan; Yasar, Kadriye Kart; Kisand, Kai; Okamoto, Keisuke; Chaïbi, Khalil; Mironska, Kristina; Maródi, László; Abel, Laurent; Renia, Laurent; Lorenzo, Lazaro; Hammarström, Lennart; Ng, Lisa F. P.; Quintana-Murci, Lluis; Erazo, Lucia Victoria; Notarangelo, Luigi D.; Reyes, Luis Felipe; Allende, Luis M.; Imberti, Luisa; Renkilaraj, Majistor Raj Luxman Maglorius; Moncada-Velez, Marcela; Materna, Marie; Anderson, Mark S.; Gut, Marta; Chbihi, Marwa; Ogishi, Masato; Emiroglu, Melike; Seppänen, Mikko R. J.; Uddin, Mohammed J.; Shahrooei, Mohammed; Alexander, Natalie; Hatipoglu, Nevin; Marr, Nico; Akçay, Nihal; Boyarchuk, Oksana; Slaby, Ondrej; Akcan, Ozge Metin; Zhang, Peng; Soler-Palacín, Pere; Gregersen, Peter K.; Brodin, Petter; Garçon, Pierre; Morange, Pierre-Emmanuel; Pan-Hammarström, Qiang; Zhou, Qinhua; Philippot, Quentin; Halwani, Rabih; de Diego, Rebeca Perez; Levy, Romain; Yang, Rui; Öz, Şadiye Kübra Tüter; Muhsen, Saleh Al; Kanık-Yüksek, Saliha; Espinosa-Padilla, Sara; Ramaswamy, Sathishkumar; Okada, Satoshi; Bozdemir, Sefika Elmas; Aytekin, Selma Erol; Karabela, Şemsi Nur; Keles, Sevgi; Senoglu, Sevtap; Zhang, Shen-Ying; Duvlis, Sotirija; Constantinescu, Stefan N.; Boisson-Dupuis, Stephanie; Turvey, Stuart E.; Tangye, Stuart G.; Asano, Takaki; Özcelik, Tayfun; Le Voyer, Tom; Maniatis, Tom; Morio, Tomohiro; Mogensen, Trine H.; Sancho-Shimizu, Vanessa; Beziat, Vivien; Solanich, Xavier; Bryceson, Yenan; Lau, Yu-Lung; Itan, Yuval; Cobat, Aurélie; Casanova, Jean-LaurentSARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1–5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFNα, IFNβ and/or IFNω, which are more common in men than in women, are found in approximately 15–20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation. © 2022, Springer Nature Limited.