Browsing by Subject "Set-valued risk measure"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Computation of systemic risk measures: a mixed-integer programming approach(INFORMS Inst.for Operations Res.and the Management Sciences, 2023-09-22) Ararat, Çaǧın; Meimanjan, N.Systemic risk is concerned with the instability of a financial system whose members are interdependent in the sense that the failure of a few institutions may trigger a chain of defaults throughout the system. Recently, several systemic risk measures have been proposed in the literature that are used to determine capital requirements for the members subject to joint risk considerations. We address the problem of computing systemic risk measures for systems with sophisticated clearing mechanisms. In particular, we consider an extension of the Rogers-Veraart network model where the operating cash flows are unrestricted in sign. We propose a mixed-integer programming problem that can be used to compute clearing vectors in this model. Because of the binary variables in this problem, the corresponding (set-valued) systemic risk measure fails to have convex values in general. We associate nonconvex vector optimization problems with the systemic risk measure and provide theoretical results related to the weighted-sum and Pascoletti-Serafini scalarizations of this problem. Finally, we test the proposed formulations on computational examples and perform sensitivity analyses with respect to some model-specific and structural parameters. Copyright: © 2023 INFORMS.Item Open Access Set-valued risk measures as backward stochastic difference inclusions and equations(Springer, 2021-01) Ararat, Çağın; Feinstein, Z.Scalar dynamic risk measures for univariate positions in continuous time are commonly represented via backward stochastic differential equations. In the multivariate setting, dynamic risk measures have been defined and studied as families of set-valued functionals in the recent literature. There are two possible extensions of scalar backward stochastic differential equations for the set-valued framework: (1) backward stochastic differential inclusions, which evaluate the risk dynamics on the selectors of acceptable capital allocations; or (2) set-valued backward stochastic differential equations, which evaluate the risk dynamics on the full set of acceptable capital allocations as a singular object. In this work, the discrete-time setting is investigated with difference inclusions and difference equations in order to provide insights for such differential representations for set-valued dynamic risk measures in continuous time.Item Open Access Set-valued shortfall and divergence risk measures(World Scientific Publishing, 2017) Ararat, C.; Hamel, A. H.; Rudloff, B.Risk measures for multivariate financial positions are studied in a utility-based framework. Under a certain incomplete preference relation, shortfall and divergence risk measures are defined as the optimal values of specific set minimization problems. The dual relationship between these two classes of multivariate risk measures is constructed via a recent Lagrange duality for set optimization. In particular, it is shown that a shortfall risk measure can be written as an intersection over a family of divergence risk measures indexed by a scalarization parameter. Examples include set-valued versions of the entropic risk measure and the average value at risk. As a second step, the minimization of these risk measures subject to trading opportunities is studied in a general convex market in discrete time. The optimal value of the minimization problem, called the market risk measure, is also a set-valued risk measure. A dual representation for the market risk measure that decomposes the effects of the original risk measure and the frictions of the market is proved.