Browsing by Subject "Set coverings"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A distance-limited continuous location-allocation problem for spatial planning of decentralized systems(Elsevier, 2017) Gokbayrak, K.; Kocaman, A. S.We introduce a new continuous location-allocation problem where the facilities have both a fixed opening cost and a coverage distance limitation. The problem has wide applications especially in the spatial planning of water and/or energy access networks where the coverage distance might be associated with the physical loss constraints. We formulate a mixed integer quadratically constrained problem (MIQCP) under the Euclidean distance setting and present a three-stage heuristic algorithm for its solution: In the first stage, we solve a planar set covering problem (PSCP) under the distance limitation. In the second stage, we solve a discrete version of the proposed problem where the set of candidate locations for the facilities is formed by the union of the set of demand points and the set of locations in the PSCP solution. Finally, in the third stage, we apply a modified Weiszfeld's algorithm with projections that we propose to incorporate the coverage distance component of our problem for fine-tuning the discrete space solutions in the continuous space. We perform numerical experiments on three example data sets from the literature to demonstrate the performance of the suggested heuristic method.Item Open Access Double bound method for solving the p-center location problem(Elsevier, 2013) Calik, H.; Tansel, B. C.We give a review of existing methods for solving the absolute and vertex restricted p-center problems on networks and propose a new integer programming formulation, a tightened version of this formulation and a new method based on successive restrictions of the new formulation. A specialization of the new method with two-element restrictions obtains the optimal p-center solution by solving a series of simple structured integer programs in recognition form. This specialization is called the double bound method. A relaxation of the proposed formulation gives the tightest known lower bound in the literature (obtained earlier by Elloumi et al., [1]). A polynomial time algorithm is presented to compute this bound. New lower and upper bounds are proposed. Problems from the OR-Library [2] and TSPLIB [3] are solved by the proposed algorithms with up to 3038 nodes. Previous computational results were restricted to networks with at most 1817 nodes.