Browsing by Subject "Sensor systems"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Flame detection system based on wavelet analysis of PIR sensor signals with an HMM decision mechanism(IEEE, 2008-08) Ug̃ur Töreyin, B.; Soyer, E. Birey; Urfaliog̃lu, Onay; Çetin, A. EnisIn this paper, a flame detection system based on a pyroelectric (or passive) infrared (PIR) sensor is described. The flame detection system can be used for fire detection in large rooms. The flame flicker process of an uncontrolled fire and ordinary activity of human beings and other objects are modeled using a set of Hidden Markov Models (HMM), which are trained using the wavelet transform of the PIR sensor signal. Whenever there is an activity within the viewing range of the PIR sensor system, the sensor signal is analyzed in the wavelet domain and the wavelet signals are fed to a set of HMMs. A fire or no fire decision is made according to the HMM producing the highest probability. copyright by EURASIP.Item Open Access Guest Editorial Special Section on Sensor Applications(2013) Gurkan, D.; Flammini, A.The six papers in this special section focus on sensor technologies and applications for their use.Item Open Access Novel compression algorithm based on sparse sampling of 3-D laser range scans(Oxford University Press, 2013) Dobrucali, O.; Barshan, B.Three-dimensional models of environments can be very useful and are commonly employed in areas such as robotics, art and architecture, facility management, water management, environmental/industrial/urban planning and documentation. A 3-D model is typically composed of a large number of measurements. When 3-D models of environments need to be transmitted or stored, they should be compressed efficiently to use the capacity of the communication channel or the storage medium effectively. We propose a novel compression technique based on compressive sampling applied to sparse representations of 3-D laser range measurements. The main issue here is finding highly sparse representations of the range measurements, since they do not have such representations in common domains, such as the frequency domain. To solve this problem, we develop a new algorithm to generate sparse innovations between consecutive range measurements acquired while the sensor moves. We compare the sparsity of our innovations with others generated by estimation and filtering. Furthermore, we compare the compression performance of our lossy compression method with widely used lossless and lossy compression techniques. The proposed method offers a small compression ratio and provides a reasonable compromise between the reconstruction error and processing time. © 2012 The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.Item Open Access Sensors in assisted living: a survey of signal and image processing methods(Institute of Electrical and Electronics Engineers, 2016-03) Erden, F.; Velipasalar, S.; Alkar, A. Z.; Çetin, A. EnisOur society will face a notable demographic shift in the near future. According to a United Nations report, the ratio of the elderly population (aged 60 years or older) to the overall population increased from 9.2% in 1990 to 11.7% in 2013 and is expected to reach 21.1% by 2050 [1]. According to the same report, 40% of older people live independently in their own homes. This ratio is about 75% in the developed countries. These facts will result in many societal challenges as well as changes in the health-care system, such as an increase in diseases and health-care costs, a shortage of caregivers, and a rise in the number of individuals unable to live independently [2]. Thus, it is imperative to develop ambient intelligence-based assisted living (AL) tools that help elderly people live independently in their homes. The recent developments in sensor technology and decreasing sensor costs have made the deployment of various sensors in various combinations viable, including static setups as well as wearable sensors. This article presents a survey that concentrates on the signal processing methods employed with different types of sensors. The types of sensors covered are pyro-electric infrared (PIR) and vibration sensors, accelerometers, cameras, depth sensors, and microphones.