Browsing by Subject "Semiconductors--Optical properties."
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Computational study of excitons and biexcitons in semiconductor core/shell nanocrystals of type I and type II(2013) Yerli, OzanIn this thesis, we studied electronic structure and optical properties of Type-I, Type-II, and quasi Type-II semiconductor nanocrystals (also known as colloidal quantum dots). For a parametric study, we developed quantum mechanical models and solved them using both analytical and numerical techniques. The simulation results were compared to the experimental findings. We showed that charge carrier localization at di↵erent spatial locations could be tuned by controlling size parameters of the core and shell. While tuning charge localization, we also predicted photoluminescence peaks of these core/shell nanocrystals using our theoretical and numerical calculations. We demonstrated that Type-II nanocrystals exhibit di↵erent tuning trends compared to the Type-I ones. We also investigated biexcitonic properties of nanocrystals using quantum mechanical simulations, which are important especially in lasing applications. We showed that two-photon absorption mechanism can be tuned by changing the core and shell size in quantum dots. We calculated at which core and shell sizes biexcitons in quantum dots show attractive or repulsive interaction. The computational studies presented in this thesis played an important role in the experimental demonstrations and understanding of controlling excitonic features of core/shell nanocrystals.Item Open Access Exciton harvesting systems of nanocrystals(2011) Mutlugün, EvrenSemiconductor nanocrystals, also known as colloidal quantum dots, have gained substantial scientific interest for innovative light harvesting applications including those in biolabeling. Organic dyes and fluorescent proteins are widely used in biotargeting and live cell imaging, but their intrinsic optical properties, such as narrow excitation windows, limit their potential for advanced applications, e.g., spectral multiplexing. Compared to these organic fluorophores, favorable properties of the quantum dots including high photoluminescence quantum yields together with tunable emission peaks and narrow spectral emission widths, high extinction coefficients, and broad absorption bands enable us to discover and innovate light harvesting composites. In such systems, however, the scientific challenge is to achieve high levels of energy transfer from one species to the other, with additional features of versatility and tunability. To address these problems, as a conceptual advancement, this thesis proposes and demonstrates a new class of versatile light harvesting systems of semiconductor nanocrystals mediated by excitonic interactions based on Förstertype nonradiative energy transfer. In this thesis, we synthesized near-unity efficiency colloidal quantum dots with as-synthesized photoluminescence quantum yields of >95%. As proof-of-concept demonstrations, we studied and achieved highly efficient exciton harvesting systems of quantum dots bound to fluorescent proteins, where the excitons are zipped from the dots to the proteins in the composite. This led to many folds of light harvesting (tunable up to 15 times) in the case of the green fluorescent protein. Using organic dye molecules electrostatically interacting with quantum dots, we showed high levels of exciton migration from the dots to the molecules (up to 94%). Furthermore, we demonstrated stand-alone, flexible membranes of nanocrystals in unprecedentedly large areas (> 50 cm × 50 cm), which paves the way for highend, large-scale applications. In the thesis, we also developed exciton-exciton coupling models to support the experimental results. This thesis opens up new possibilities for exciton-harvesting in biolabeling and optoelectronics.Item Open Access Macrocrystals of semiconductor nanocrystals for light emitting diodes(2013) Akcalı, HalilWorldwide energy consumption is rapidly increasing and general lighting constitutes an important portion of it. By considering most of the lighting sources to rely on fluorescent lamps today, solid-state lighting has a great potential especially with recent advances on efficiency and color quality of white light-emitting diodes (LEDs). One of the most promising approaches for the current white LED technology is based on the use of color-conversion materials. In recent years semiconductor nanocrystal quantum dots (NQDs) have arisen as an important class of color-convertors because of their tunable and superior optical properties and today there are various prototypes and commercial products. Recently, a new material system involving macrocrystals of NQDs has been introduced. In this thesis, different types of NQD macrocrystals are developed and studied for the white LED application. These macrocrystals of NQDs are produced by forming ionic salts in the presence of water soluble NQDs. This enhances the stability of NQDs wrapped in salt solids and allows for high integration capability in powder form to current LED technology employing commercial encapsulants. This thesis also includes a colorimetric study of white LEDs using such macrocrystals of NQDs to demonstrate high-quality white light with high color rendering index, low correlated color temperature, and high luminous efficacy of optical radiation.Item Open Access Multi exciton generation and recombination of semiconductor nanocrystals : fundamental understanding and applications(2013) Cihan, Ahmet FatihSemiconductor nanocrystal quantum dots (QDs) have been found to be very promising for important application areas in optoelectronics and photonics. Their energy band-gap tunability, high performance band-edge emission, decent temperature stabilities, and easy material processing make the QDs attractive for these applications ranging from photovoltaic devices to photodetectors and lasers to light-emitting diodes. For these QDs, the concepts of multi exciton generation (MEG) and recombination (MER) have recently been shown to be important especially because they possibly enable efficiency levels exceeding unity using these QDs in various device configurations. However, understanding multi exciton kinetics in QD solids has been hindered by the confusion of MER with the recombination of carriers in charged QDs. This understanding lacks to date and the spectral-temporal aspects of MER still remain unresolved in solid QD ensembles. In this thesis, we reveal the spectral-temporal behavior of biexcitons (BXs) in the presence of photocharging using near-unity quantum yield core/shell CdSe/CdS QDs. The spectral behavior of BXs and that of excitons (Xs) were obtained for the QD samples with different core sizes, exhibiting the strength-tunability of the X-X interaction energy in these QDs. The extraction of spectrally resolved X, BX, and trion kinetics, which would be spectrally unresolved using conventional approaches, is enabled by our approach introducing the integrated time-resolved fluorescence. Besides the fundamental understanding of MEG and MER concepts, we also explored the possibility of utilizing multi excitons in these QDs for optical gain. In this part of the thesis, tunable, high performance, two-photon absorption (TPA) based amplified spontaneous emission (ASE) from the same QDs is presented. Here, for the first time, in addition to the absolute spectral tuning of the ASE, on the single material system of CdSe/CdS, the relative spectral tuning of ASE peak with respect to spontaneous emission was demonstrated. With the core and shell size adjustments, it was shown that Coulombic X-X interactions can be tuned to be either attractive leading to the red-shifted ASE peak or repulsive leading to the blue-shifted ASE peak and that non-shifting ASE can be achieved with the right core-shell combinations. It was further found here that it is possible to obtain ASE at a specific wavelength from both Type-I-like and Type-II-like CdSe/CdS QDs. In addition to the CdSe/CdS QDs, we showed ASE and Type-tunability features on CdSe/CdS nanorods (NRs), which are particularly promising with their extremely high TPA cross-sections and independent emission/absorption tunabilities. In the final part of the thesis, we report the observation of MEG on CdHgTe QDs, for the first time in the literature, and a novel application of MEG concept in a photosensor device, one of the first examples of real-life photosensing application of MEG concept. We believe that the results provided in this thesis do not only contribute to the fundamental understanding of MEG and MER concepts in the QDs, but also pave the way for the utilization of these concepts in the QD-based lasers, photodetectors and photovoltaic devices.Item Open Access Novel light-sensitive nanocrystal skins(2013) Akhavan, ShahabLight sensing devices traditionally made from crystalline or amorphous silicon, operating at the visible and near-infrared wavelengths, have led to a multibillion-dollar annual market. However, silicon faces various limitations including weak detection at long wavelengths (insufficient beyond 1.1 µm) with a cut-off at short wavelengths (in the ultraviolet) and small-area applications. On the other hand, solution-processed semiconductor nanocrystals (NCs), also known as colloidal quantum dots, offer large-area light sensing platforms with strong absorption cross-section. In this thesis we propose and demonstrate a new class of large-area, semi-transparent, light-sensitive nanocrystal skin (LS-NS) devices intended for large-surface applications including smart transparent windows and light-sensitive glass facades of smart buildings. These LS-NS platforms, which are fabricated over areas up to many tens of cm2 using spraycoating and several cm-squares using dip-coating, are operated on the basis of photogenerated potential buildup, as opposed to conventional charge collection. The close interaction of the monolayer NCs of the LS-NS with the top interfacing metal contact results in highly sensitive photodetection in the absence of external bias, while the bottom side is isolated using a high dielectric spacing layer. In operation, electron-hole pairs created in the NCs of the LS-NS are disassociated and separated at the NC monolayer - metal interface due to the difference in the workfunctions. As a result, the proposed LS-NS platforms perform as highly sensitive photosensors, despite using a single NC monolayer, which makes the device semi-transparent and reduces the noise generation Furthermore, because of the band gap tunability, it is possible to construct cascaded NC layers with a designed band gap gradient where the NC diameters monotonically change. Here we present the first account of exciton funneling in an active device, which leads to significant performance improvement in the device. We show highly photosensitive NC skins employing the exciton funneling across the multiple layers of NC film. To further enhance the device photosensitivity performance, we demonstrate embedding plasmonic nanoparticles into the light-sensitive skins of the NCs. In addition, we exhibit the LS-NS device sensitivity enhancement utilizing the device architecture of semi-transparent tandem skins, the addition of TiO2 layer for increased charge carrier dissociation, and the phenomenon of multiexciton generation in infrared NCs. With fully sealed NC monolayers, LS-NS is found to be highly stable under ambient conditions, promising for low-cost large-area UV/visible sensing in windows and facades of smart buildings. We believe the findings presented in this thesis have significant implications for the future design of photosensing platforms and for moving toward next generation large-surface light-sensing platforms.Item Open Access Novel ultraviolet scintillators based on semiconductor quantum dot emitters for significantly enhanced photodetection and photovoltaics(2007) Mutlugün, EvrenSilicon photonics opens opportunities to realize optoelectronic devices directly on large-scale integrated electronics, leveraging advanced Si fabrication and computation capabilities. However, silicon is constrained in different aspects for use in optoelectronics. Such one limitation is observed in Si based photodetectors, cameras, and solar cells that exhibit very poor responsivity in the ultraviolet (UV) spectral range. Si CMOS photodetectors and CCD cameras cannot be operated in UV, despite the strong demand for UV detection and imaging in security applications. Also, although 95% of the photovoltaics market is dominated by Si based solar cells, silicon is not capable of using UV radiation of the solar spectrum for solar energy conversion, as required especially in space applications. In this thesis for the first time, we demonstrate novel UV scintillators made of semiconductor quantum dot emitters hybridized on Si detectors and cameras to detect and image in UV with significantly improved responsivity and on Si solar cells to generate electrical energy from UV radiation with significantly improved solar conversion efficiency. We present the device conception, design, fabrication, experimental characterization, and theoretical analysis of these UV nanocrystal scintillators. Integrating highly luminescent CdSe/ZnS core-shell nanocrystals, we demonstrate hybrid photodetectors that exhibit two-orders-of-magnitude peak enhancement in their responsivity. We also develop photovoltaic nanocrystal scintillators to enhance open-circuit voltage, short-circuit current, fill factor, and solar conversion efficiency in UV. Hybridizing CdSe/ZnS quantum dots on Si photovoltaic devices, we show that the solar conversion efficiency is doubled under white light illumination (Xe lamp). Such UV scintillator nanocrystals hold great promise to enable photodetection and imaging in UV and extend photovoltaic activity to UV.Item Open Access Refractive index tuning with Burstein-Moss effect in Indium Nitrite under photoexcitation(2009) Turgut, Cem MuratThe band filling effect due to free carriers introduces a shift in the absorption edge, which in turn modifies the refractive index of the medium through the Kramers-Kronig relation. This is known as the Burstein-Moss effect. Based on the full band pseudopotential electronic structure calculations, we demonstrate that Burstein-Moss effect will be crucial in the design of InN based lasers. The primary reason is the small effective mass and the strong nonparabolicity of the conduction band of InN where the shift in the absorption edge is more than 0.5 eV for an electron density of the order of 1019 cm−3. On the other hand, for the case of valence band, the shift in the absorption edge is approximately 0.04 eV. However due to high density of states at the edge of the valence band, also this shift becomes crucial since it opens intraband transitions in the medium. In the case of laser structures, the Burstein-Moss effect in both conduction and valence bands needs to be considered. Furthermore, we take into account the band gap renormalization due to high free carrier concentration. For the case of semiconductor laser structures, which can be also considered as an n-p junction, we predict about 2% change in the refractive index for a wavelength 1.55 µm at an electron-hole density of 1019 cm−3. When we compare photoexcited (i.e., n = p) InN with n-type doped InN, in the former case the intraband transitions in the valence band which is a result of Γv 5 → Γv 6 transition, partially cancels the Burstein-Moss effect. Our findings can also have direct implications for InN based optical modulators.Item Open Access Selective plasmonic control of excitons and their non-radiative energy transfer in colloidal semiconductor quantum dot solids(2009) Özel, TuncayTo date extensive research has proved that semiconductors and metals exhibit extraordinary optical properties in nano-dimensions compared to their bulk counterparts. For example, an interesting effect is observed in metal nanostructures/nanoparticles (NPs) that we form to obtain localized plasmons, with their optical response highly tuneable using the size effect. Another field of interest at the nanoscale is the investigation of light generation and harvesting using colloidal semiconductor quantum dot nanocrystals (NCs) that we synthesize in few nanometers, with their emission and absorption excitonic peaks conveniently tuneable using the size effect. In this thesis, we proposed and demonstrated the first accounts of selectively plasmonically-controlled colloidal quantum dot emitters assembled in innovative architectures, with a control achieved either through spatial selection or spectral selection. In the first set of designs, we developed for the first time plasmonic NC-composites that rely on spatially-selected plasmon-coupled CdTe NC-monolayers interspaced with respect to Au NP-monolayers in a repeating three-dimensional layer-by-layer architecture. In these bottom-up designs of hybrid nanocomposites, the photoluminescence kinetics is strongly modified and a record quantum efficiency of 30% is achieved for such CdTe NC solids. In the second set of designs, we showed the first spectrally-selected plasmon-coupling of surfaceemitting CdS NCs using optimized Ag NP deposits. This architecture allowed for the surface-state emission to be selectively enhanced while the interband emission is simultaneously suppressed in the same plasmon-coupled NCs, leading to the strongest surface-state emission from such CdS NCs reported with respect to their interband emission (with a >12-fold enhancement). Yet another important proximity phenomenon effective among quantum dot emitters is the Förster-type non-radiative resonance energy transfer (ET), in which excitonic excitation energy of the donor-NCs is non-radiatively transferred to the acceptor-NCs via dipole-dipole coupling. In the third set of our designs, we combined two fundamental proximity mechanisms of plasmon coupling and non-radiative energy transfer in the same NC solids. In plasmonic ET, we reported for the first time selectively plasmon-coupling of NC-acceptors and then that of NC-donors in the ET pair, both of which result in substantial enhancement of the acceptor emission with respect to ET with no plasmon coupling (with a maximum of 2-fold enhancement) as verified by their steadystate and time-resolved photoluminescence. This concept of spectrally/spatiallyselective plasmon coupling in quantum dots paves a new path for devices and sensors in nanophotonics.Item Open Access Semiconductor quantum dots driven by radiative and nonradiative energy transfer for high-efficiency hybrid LEDs and photovoltaics(2011) Güzeltürk, BurakToday the world energy demand has overtaken unprecedented consumption levels, which have never been reached before in the history of the world. The current trends indicate that the increasing demand for energy will tend to continue at an increasing pace in the coming decades due to worldwide globalization and industrialization. Scientific community is challenged to devise and develop fundamentally new technologies to cope with the energy problem of the world. To this end, optoelectronics can offer several solutions for energy efficiency both in light harvesting and generation. In this thesis, we propose and demonstrate enhanced light generation and harvesting by utilizing both radiative and nonradiative energy transfer capabilities of semiconductor nanocrystal quantum dots, which are profited for the development of novel hybrid devices combining superior properties of the constituent material systems. One of our proposals in this thesis relies on grafting nanostructured light emitting diodes with nanocrystal quantum dots to realize highly efficient color conversion. To the best of our knowledge, we report the highest nonradiative energy transfer efficiency of 83% obtained at room temperature for this type of colorconversion light emitting diodes owing to the architectural superiorities of their nanostructure. In another proposal, we addressed charge injection problems of electrically pumped nanocrystal-based light emitting diodes. We proposed and demonstrated the utilization of novel excitonic injection scheme to drive such LEDs of nanocrystals, which may become prominent especially for the display technology. Finally, we proposed and implemented quantum dot downconversion layers in nanostructured silicon solar cells to benefit the advantages of their nanostructured architecture. We have shown that nanostructured silicon solar cells lead to stronger enhancements compared to the planar counterparts.