Browsing by Subject "Security and privacy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Quantifying genomic privacy via inference attack with high-order SNV correlations(IEEE, 2015) Samani, S. S.; Huang, Z.; Ayday, Erman; Elliot, M.; Fellay, J.; Hubaux, J.-P.; Kutalik, Z.As genomic data becomes widely used, the problem of genomic data privacy becomes a hot interdisciplinary research topic among geneticists, bioinformaticians and security and privacy experts. Practical attacks have been identified on genomic data, and thus break the privacy expectations of individuals who contribute their genomic data to medical research, or simply share their data online. Frustrating as it is, the problem could become even worse. Existing genomic privacy breaches rely on low-order SNV (Single Nucleotide Variant) correlations. Our work shows that far more powerful attacks can be designed if high-order correlations are utilized. We corroborate this concern by making use of different SNV correlations based on various genomic data models and applying them to an inference attack on individuals' genotype data with hidden SNVs. We also show that low-order models behave very differently from real genomic data and therefore should not be relied upon for privacy-preserving solutions.Item Open Access Quantifying interdependent risks in genomic privacy(Association for Computing Machinery, 2017-02) Humbert M.; Ayday, E.; Hubaux, Jean-Pierre; Telenti A.The rapid progress in human-genome sequencing is leading to a high availability of genomic data. These data is notoriously very sensitive and stable in time, and highly correlated among relatives. In this article, we study the implications of these familial correlations on kin genomic privacy. We formalize the problem and detail efficient reconstruction attacks based on graphical models and belief propagation. With our approach, an attacker can infer the genomes of the relatives of an individual whose genome or phenotype are observed by notably relying on Mendel’s Laws, statistical relationships between the genomic variants, and between the genome and the phenotype. We evaluate the effect of these dependencies on privacy with respect to the amount of observed variants and the relatives sharing them. We also study how the algorithmic performance evolves when we take these various relationships into account. Furthermore, to quantify the level of genomic privacy as a result of the proposed inference attack, we discuss possible definitions of genomic privacy metrics, and compare their values and evolution. Genomic data reveals Mendelian disorders and the likelihood of developing severe diseases, such as Alzheimer’s. We also introduce the quantification of health privacy, specifically, the measure of how well the predisposition to a disease is concealed from an attacker. We evaluate our approach on actual genomic data from a pedigree and show the threat extent by combining data gathered from a genome-sharing website as well as an online social network.