Browsing by Subject "Second orders"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Fano effect in a double T-shaped interferometer(Springer, 2009) Moldoveanu, V.; Dinu, I. V.; Tanatar, BilalWe study the coherent transport in a one-dimensional lead with two side-coupled quantum dots using the Keldysh's Green function formalism.The effect of the interdot Coulomb interaction is taken into account by computing the firstand second order contributions to the self-energy.We show that the Fano interference due to the resonance of one dotis strongly affected by the fixed parameters that characterize the second dot. If the second dot is tuned close to resonance an additionalpeak develops between the peak and dip of the Fano line shape of the current. In contrast, when the second dotis off-resonance and its occupation number is close to unity the interdot Coulomb interaction merely shifts the Fano line and no other maxima appear.The system we consider is more general than the single-dot interferometer studied experimentally by Kobayashi et al. [Phys. Rev. B 70, 035319 (2004)] and may be used for controlling quantum interference and studying decoherence effects in mesoscopic transport.Item Open Access First principles prediction of the elastic, electronic, and optical properties of Sb 2S 3 and Sb 2Se 3 compounds(2012) Koc H.; Mamedov, A.M.; Deligoz, E.; Ozisik H.We have performed a first principles study of structural, mechanical, electronic, and optical properties of orthorhombic Sb 2S 3 and Sb 2Se 3 compounds using the density functional theory within the local density approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds have been obtained. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, Debye temperature, and hardness have also been estimated in the present work. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valence electrons and the effective optical dielectric constant are calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data. © 2012 Elsevier Masson SAS. All rights reserved.Item Open Access Low-order controller design for haptic systems under delayed feedback(2012) Liacu, B.; Koru, A. T.; Özbay, Hitay; Niculescu, S. -I.; Andriot, C.In this paper, we consider PD controller design for haptic systems under delayed feedback. More precisely, we present a complete stability analysis of a haptic system where local dynamics are described by some second-order mechanical dynamics. Next, using two optimization techniques (H ∞ and stability margin optimization) we propose an optimal choice for the controller gains. The derived results are tested on a three degree of freedom real-time experimental platform to illustrate the theoretical results. © 2012 IFAC.Item Open Access Lower bounds on the error probability of turbo codes(IEEE, 2014-06-07) Özçelikkale, Ayça; Duman, Tolga M.We present lower bounds on the error probability of turbo codes under maximum likelihood (ML) decoding. We focus on additive white Gaussian noise (AWGN) channels, and consider both ensembles of codes with uniform interleaving and specific turbo codes with fixed interleavers. To calculate the lower bounds, instead of using the traditional approach that only makes use of the distance spectrum, we propose to utilize the exact second order distance spectrum. This approach together with a proper restriction of the error events results in promising lower bounds. © 2014 IEEE.Item Open Access Polar compressive sampling: A novel technique using polar codes(IEEE, 2010) Pilancı, Mert; Arıkan, Orhan; Arıkan, ErdalRecently introduced Polar coding is the first practical coding technique that can be proven to achieve the Shannon capacity for a multitude of communication channels. Polar codes are close to Reed-Muller codes except the fact that they are tuned for the parameters of the channel. Hence, Polar codes are shown to offer better performance, e.g., in the erasure channel. It is known that second order Reed-Muller codes can be used for Compressed Sensing. Inspired by that result, we propose Polar codes as measurement matrices in CS and compare their numerical performances. We also present the algebraic relation between the erasure channel and CS theory, and discuss fast solution techniques. ©2010 IEEE.