Browsing by Subject "Search engine"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Architecture of a grid-enabled Web search engine(Elsevier Ltd, 2007) Cambazoglu, B. B.; Karaca, E.; Kucukyilmaz T.; Turk, A.; Aykanat, CevdetSearch Engine for South-East Europe (SE4SEE) is a socio-cultural search engine running on the grid infrastructure. It offers a personalized, on-demand, country-specific, category-based Web search facility. The main goal of SE4SEE is to attack the page freshness problem by performing the search on the original pages residing on the Web, rather than on the previously fetched copies as done in the traditional search engines. SE4SEE also aims to obtain high download rates in Web crawling by making use of the geographically distributed nature of the grid. In this work, we present the architectural design issues and implementation details of this search engine. We conduct various experiments to illustrate performance results obtained on a grid infrastructure and justify the use of the search strategy employed in SE4SEE. © 2006 Elsevier Ltd. All rights reserved.Item Open Access Automatic performance evaluation of Web search engines(Elsevier, 2004) Can, F.; Nuray, R.; Sevdik, A. B.Measuring the information retrieval effectiveness of World Wide Web search engines is costly because of human relevance judgments involved. However, both for business enterprises and people it is important to know the most effective Web search engines, since such search engines help their users find higher number of relevant Web pages with less effort. Furthermore, this information can be used for several practical purposes. In this study we introduce automatic Web search engine evaluation method as an efficient and effective assessment tool of such systems. The experiments based on eight Web search engines, 25 queries, and binary user relevance judgments show that our method provides results consistent with human-based evaluations. It is shown that the observed consistencies are statistically significant. This indicates that the new method can be successfully used in the evaluation of Web search engines. © 2003 Elsevier Ltd. All rights reserved.Item Open Access Caching techniques for large scale web search engines(2011) Özcan, RıfatLarge scale search engines have to cope with increasing volume of web content and increasing number of query requests each day. Caching of query results is one of the crucial methods that can increase the throughput of the system. In this thesis, we propose a variety of methods to increase the efficiency of caching for search engines. We first provide cost-aware policies for both static and dynamic query result caches. We show that queries have significantly varying costs and processing cost of a query is not proportional to its frequency (popularity). Based on this observation, we develop caching policies that take the query cost into consideration in addition to frequency, while deciding which items to cache. Second, we propose a query intent aware caching scheme such that navigational queries are identified and cached differently from other queries. Query results are cached and presented in terms of pages, which typically includes 10 results each. In navigational queries, the aim is to reach a particular web site which would be typically listed at the top ranks by the search engine, if found. We argue that caching and presenting the results of navigational queries in this 10-per-page manner is not cost effective and thus we propose alternative result presentation models and investigate the effect of these models on caching performance. Third, we propose a cluster based storage model for query results in a static cache. Queries with common result documents are clustered using single link clustering algorithm. We provide a compact storage model for those clusters by exploiting the overlap in query results. Finally, a five-level static cache that consists of all cacheable data items (query results, part of index, and document contents) in a search engine setting is presented. A greedy method is developed to determine which items to cache. This method prioritizes items for caching based on gains computed using items’ past frequency, estimated costs, and storage overheads. This approach alsoconsiders the inter-dependency between items such that caching of an item may affect the gain of items that are not cached yet. We experimentally evaluate all our methods using a real query log and document collections. We provide comparisons to corresponding baseline methods in the literature and we present improvements in terms of throughput, number of cache misses, and storage overhead of query results.Item Open Access Improving the efficiency of search engines : strategies for focused crawling, searching, and index pruning(2009) Altıngövde, İsmail SengörSearch engines are the primary means of retrieval for text data that is abundantly available on the Web. A standard search engine should carry out three fundamental tasks, namely; crawling the Web, indexing the crawled content, and finally processing the queries using the index. Devising efficient methods for these tasks is an important research topic. In this thesis, we introduce efficient strategies related to all three tasks involved in a search engine. Most of the proposed strategies are essentially applicable when a grouping of documents in its broadest sense (i.e., in terms of automatically obtained classes/clusters, or manually edited categories) is readily available or can be constructed in a feasible manner. Additionally, we also introduce static index pruning strategies that are based on the query views. For the crawling task, we propose a rule-based focused crawling strategy that exploits interclass rules among the document classes in a topic taxonomy. These rules capture the probability of having hyperlinks between two classes. The rulebased crawler can tunnel toward the on-topic pages by following a path of off-topic pages, and thus yields higher harvest rate for crawling on-topic pages. In the context of indexing and query processing tasks, we concentrate on conducting efficient search, again, using document groups; i.e., clusters or categories. In typical cluster-based retrieval (CBR), first, clusters that are most similar to a given free-text query are determined, and then documents from these clusters are selected to form the final ranked output. For efficient CBR, we first identify and evaluate some alternative query processing strategies. Next, we introduce a new index organization, so-called cluster-skipping inverted index structure (CS-IIS). It is shown that typical-CBR with CS-IIS outperforms previous CBR strategies (with an ordinary index) for a number of datasets and under varying search parameters. In this thesis, an enhanced version of CS-IIS is further proposed, in which all information to compute query-cluster similarities during query evaluation is stored. We introduce an incremental-CBR strategy that operates on top of this latter index structure, and demonstrate its search efficiency for different scenarios. Finally, we exploit query views that are obtained from the search engine query logs to tailor more effective static pruning techniques. This is also related to the indexing task involved in a search engine. In particular, query view approach is incorporated into a set of existing pruning strategies, as well as some new variants proposed by us. We show that query view based strategies significantly outperform the existing approaches in terms of the query output quality, for both disjunctive and conjunctive evaluation of queries.Item Open Access Models and algorithms for parallel text retrieval(2006) Cambazoğlu, Berkant BarlaIn the last decade, search engines became an integral part of our lives. The current state-of-the-art in search engine technology relies on parallel text retrieval. Basically, a parallel text retrieval system is composed of three components: a crawler, an indexer, and a query processor. The crawler component aims to locate, fetch, and store the Web pages in a local document repository. The indexer component converts the stored, unstructured text into a queryable form, most often an inverted index. Finally, the query processing component performs the search over the indexed content. In this thesis, we present models and algorithms for efficient Web crawling and query processing. First, for parallel Web crawling, we propose a hybrid model that aims to minimize the communication overhead among the processors while balancing the number of page download requests and storage loads of processors. Second, we propose models for documentand term-based inverted index partitioning. In the document-based partitioning model, the number of disk accesses incurred during query processing is minimized while the posting storage is balanced. In the term-based partitioning model, the total amount of communication is minimized while, again, the posting storage is balanced. Finally, we develop and evaluate a large number of algorithms for query processing in ranking-based text retrieval systems. We test the proposed algorithms over our experimental parallel text retrieval system, Skynet, currently running on a 48-node PC cluster. In the thesis, we also discuss the design and implementation details of another, somewhat untraditional, grid-enabled search engine, SE4SEE. Among our practical work, we present the Harbinger text classification system, used in SE4SEE for Web page classification, and the K-PaToH hypergraph partitioning toolkit, to be used in the proposed models.Item Open Access Static query result caching revisited(ACM, 2008-04) Özcan, Rıfat; Altıngövde, İsmail Şengör; Ulusoy, ÖzgürQuery result caching is an important mechanism for search engine efficiency. In this study, we first review several query features that are used to determine the contents of a static result cache. Next, we introduce a new feature that more accurately represents the popularity of a query by measuring the stability of query frequency over a set of time intervals. Experimental results show that this new feature achieves hit ratios better than those of the previously proposed features.Item Open Access Utilization of navigational queries for result presentation and caching in search engines(ACM, 2008-10) Özcan, Rıfat; Altıngövde, İsmail Şengör; Ulusoy, ÖzgürWe propose result page models with varying granularities for navigational queries and show that this approach provides a better utilization of cache space and reduces bandwidth requirements.