BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Screening techniques"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Kelime histogram modeli ile histopatolojik görüntü sınıflandırılması
    (IEEE, 2011-04) Özdemir, Erdem; Sökmensüer, C.; Gündüz-Demir, Çiğdem
    Colon cancer, which is one of the most common cancer type, could be cured with its early diagnosis. In the current practice of medicine, there are many screening techniques such as colonoscopy, sigmoidoscopy, and stool test, however the most effective and most widely used method for cancer diagnosis is to take tissue sections with biopsy and examine them under a microscope. As this examination is based on visual interpretation, it may lead to subjective decisions and diagnostic differences among pathologists. The need of reducing inter-variability in cancer diagnosis has led to studies for extraction of features from biopsy images and development of algorithms that give objective results. In this paper, we propose a method for the automated classification of a colon tissue image with the features extracted from a histogram that models the existence of image regions determined in an unsupervised way. Experiments on colon tissue images show that the proposed method leads to more successful results compared to its counterparts. Moreover, the proposed method, which uses color intensities for feature extraction, has the potential of giving better results with the use of additional features. © 2011 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback