BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Score function"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Generic text summarization for Turkish
    (Oxford University Press, 2010) Kutlu, M.; Cığır, C.; Cicekli, I.
    In this paper, we propose a generic text summarization method that generates summaries of Turkish texts by ranking sentences according to their scores. Sentence scores are calculated using their surface-level features, and summaries are created by extracting the highest ranked sentences from the original documents. To extract sentences which form a summary with an extensive coverage of the main content of the text and less redundancy, we use features such as term frequency, key phrase (KP), centrality, title similarity and sentence position. The sentence rank is computed using a score function that uses its feature values and the weights of the features. The best feature weights are learned using machine-learning techniques with the help of human-constructed summaries. Performance evaluation is conducted by comparing summarization outputs with manual summaries of two newly created Turkish data sets. This paper presents one of the first Turkish summarization systems, and its results are promising. We introduce the usage of KP as a surface-level feature in text summarization, and we show the effectiveness of the centrality feature in text summarization. The effectiveness of the features in Turkish text summarization is also analyzed in detail. © The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrated segmentation and recognition of connected Ottoman script
    (S P I E - International Society for Optical Engineering, 2009-11) Yalniz, I. Z.; Altingovde, I. S.; Güdükbay, Uğur; Ulusoy, Özgür
    We propose a novel context-sensitive segmentation and recognition method for connected letters in Ottoman script. This method first extracts a set of segments from a connected script and determines the candidate letters to which extracted segments are most similar. Next, a function is defined for scoring each different syntactically correct sequence of these candidate letters. To find the candidate letter sequence that maximizes the score function, a directed acyclic graph is constructed. The letters are finally recognized by computing the longest path in this graph. Experiments using a collection of printed Ottoman documents reveal that the proposed method provides >90% precision and recall figures in terms of character recognition. In a further set of experiments, we also demonstrate that the framework can be used as a building block for an information retrieval system for digital Ottoman archives. © 2009 Society of Photo-Optical Instrumentation Engineers.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback