Browsing by Subject "Scanning probe microscopy"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access 3D Force field spectroscopy(Springer, Cham, 2015) Baykara, Mehmet Z.; Schwarz, U. D.; Morita, S.; Giessibl, F. J.; Meyer, E.; Wiesendanger, R.With recent advances in instrumentation and experimental methodology, noncontact atomic force microscopy is now being frequently used to measure the atomic-scale interactions acting between a sharp probe tip and surfaces of interest as a function of three spatial dimensions, via the method of three-dimensional atomic force microscopy (3D-AFM). In this chapter, we discuss the different data collection and processing approaches taken towards this goal while highlighting the associated advantages and disadvantages in terms of correct interpretation of results. Additionally, common sources of artifacts in 3D-AFM measurements, including thermal drift, piezo nonlinearities, and tip-related issues such as asymmetry and elasticity are considered. Finally, the combination of 3D-AFM with simultaneous scanning tunneling microscopy (STM) is illustrated on surface-oxidized Cu(100). We conclude the chapter by an outlook regarding the future development of the 3D-AFM method.Item Open Access Atomic force microscopy: Methods and applications(Elsevier, 2017) Baykara, Mehmet Z.; Schwarz, U. D.; Lindon, J.; Tranter, G. E.; Koppenaal, D.This chapter provides an overview of atomic force microscopy, covering the fundamental aspects of the associated instrumentation and methodology as well as representative results from the literature highlighting a variety of application areas. In particular, atomic-resolution imaging and spectroscopy capabilities are emphasized, in addition to applications in biology, nanotribology and catalysis research. Finally, an outlook on emerging aspects and future prospects of atomic force microscopy is provided.Item Open Access Linear and non-linear optical properties of AgBO3(B=Nb, Ta): First principle study(IEEE, 2013) Şimşek, Şevket; Mamedov, Amirullah M.; Özbay, EkmelThe linear and nonlinear optical properties of ferroelectrics AgBO 3 (B=Ta, Nb) are studied by density functional theory (DFT) in the local density approximation (LDA) expressions based on first principle calculations without the scissor approximation. Specially, we present calculations of the frequency-dependent complex dielectric function ε(ω), and the second harmonic generation response coefficient χ(2)(-2ω,ω,ω) over a large frequency range in rhombohedral phase for the first time. The electronic linear electrooptic susceptibility χ(2)(-ω,ω,0) is also evaluated below the band gap. These results are based on a series of the LDA calculation using DFT. © 2013 IEEE.Item Open Access One and two dimensional LiNbO3 photonic crystals(IEEE, 2013) Şimşek, Şevket; Mamedov, Amirullah M.; Özbay, EkmelIn this report, we present an investigation of the optical properties and band structure calculations for the photonic crystal structures (PCs) based on one-dimensional (1D) and two-dimensional (2D) ferroelectric LiNbO3 crystal. Here we use 1D and 2D periodic crystal structure of dielectric rods and layers in air background. We have theoretically calculated photonic band structure and optical properties of 1D and 2D LiNbO3 PCs. Beside, we have calculated affect PBG properties of different parameters such as filling fraction and the shape. In order to get photonic gap map, we have calculated the gaps as a function of radius of the rods. We have also investigated the nature of guided modes in line defect waveguide. In our simulation, we employed the finite-difference time domain (FDTD) technique which implies the solution of Maxwell equations with centered finite-difference expressions for the space and time derivatives. © 2013 IEEE.Item Open Access Room Temperature Scanning Micro-Hall Probe Microscope Imagingof Ferromagnetic Microstructures in the Presence of 2.5 Tesla Pulsed Magnetic FieldsGenerated by an Integrated Mini Coil(Institute of Physics Publishing, 2002) Sandhu, A.; Masuda, H.; Oral, A.A unique magnetic imaging system comprising of a room temperature scanning Hall probe microscope with an integratedmini-coil capable of generating pulsed magnetic fields up to 2.5 Tesla (width of 3 ms) was developed for the direct andnon-invasive magnetic imaging of ferromagnetic micro-domains in the presence of extremely large external pulsed mag-netic fields without adverse vibrational disturbance of the sample during measurements. The system was successfully usedfor magnetic imaging of the erasure process of bit patterns on the surface of 1.4 MB written floppy disks and the dynamicsof micro-domain structures of demagnetized strontium ferrite permanent magnets under large external pulsed magnetic fields.Item Open Access Simultaneous measurement of multiple independent atomic-scale interactions using scanning probe microscopy: data interpretation and the effect of cross-talk(American Chemical Society, 2015) Baykara, M. Z.; Todorović, M.; Mönig, H.; Schwendemann, T. C.; Rodrigo, L.; Altman, E. I.; Pérez, R.; Schwarz, U. D.In high-resolution scanning probe microscopy, it is becoming increasingly common to simultaneously record multiple channels representing different tip-sample interactions to collect complementary information about the sample surface. A popular choice involves simultaneous scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) measurements, which are thought to reflect the chemical and electronic properties of the sample surface. With surface-oxidized Cu(100) as an example, we investigate whether atomic-scale information on chemical interactions can be reliably extracted from frequency shift maps obtained while using the tunneling current as the feedback parameter. Ab initio calculations of interaction forces between specific tip apexes and the surface are utilized to compare experiments with theoretical expectations. The examination reveals that constant-current operation may induce a noticeable influence of topography-feedback-induced cross-talk on the frequency shift data, resulting in misleading interpretations of local chemical interactions on the surface. Consequently, the need to apply methods such as 3D-AFM is emphasized when accurate conclusions about both the local charge density near the Fermi level, as provided by the STM channel, and the site-specific strength of tip-sample interactions (NC-AFM channel) are desired. We conclude by generalizing to the case where multiple atomic-scale interactions are being probed while only one of them is kept constant.Item Open Access Structural, elastic, and electronic properties of topological insulators: Sb2Te3 and Bi2Te3(IEEE, 2013) Koc H.; Mamedov, Amirullah M.; Özbay, EkmelWe have performed a first principles study of structural, elastic, and electronic properties of rhombohedral Sb2Te3 and Bi 2Te3 compounds using the density functional theory within the local density approximation. The lattice parameters of considered compounds have been calculated. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, and Debye temperature have also been estimated in the present work. The calculated electronic band structure shows that Sb2Te3 and Bi2Te 3 compounds have a direct forbidden band gap. Our structural estimation and some other results are in agreement with the available experimental and theoretical data. © 2013 IEEE.Item Open Access Using data compression for increasing memory system utilization(Institute of Electrical and Electronics Engineers, 2009-06) Ozturk, O.; Kandemir, M.; Irwin, M. J.The memory system presents one of the critical challenges in embedded system design and optimization. This is mainly due to the ever-increasing code complexity of embedded applications and the exponential increase seen in the amount of data they manipulate. The memory bottleneck is even more important for multiprocessor-system-on-a-chip (MPSoC) architectures due to the high cost of off-chip memory accesses in terms of both energy and performance. As a result, reducing the memory-space occupancy of embedded applications is very important and will be even more important in the next decade. While it is true that the on-chip memory capacity of embedded systems is continuously increasing, the increases in the complexity of embedded applications and the sizes of the data sets they process are far greater. Motivated by this observation, this paper presents and evaluates a compiler-driven approach to data compression for reducing memory-space occupancy. Our goal is to study how automated compiler support can help in deciding the set of data elements to compress/ decompress and the points during execution at which these compressions/decompressions should be performed. We first study this problem in the context of single-core systems and then extend it to MPSoCs where we schedule compressions and decompressions intelligently such that they do not conflict with application execution as much as possible. Particularly, in MPSoCs, one needs to decide which processors should participate in the compression and decompression activities at any given point during the course of execution. We propose both static and dynamic algorithms for this purpose. In the static scheme, the processors are divided into two groups: those performing compression/ decompression and those executing the application, and this grouping is maintained throughout the execution of the application. In the dynamic scheme, on the other hand, the execution starts with some grouping but this grouping can change during the course of execution, depending on the dynamic variations in the data access pattern. Our experimental results show that, in a single-core system, the proposed approach reduces maximum memory occupancy by 47.9% and average memory occupancy by 48.3% when averaged over all the benchmarks. Our results also indicate that, in an MPSoC, the average energy saving is 12.7% when all eight benchmarks are considered. While compressions and decompressions and related bookkeeping activities take extra cycles and memory space and consume additional energy, we found that the improvements they bring from the memory space, execution cycles, and energy perspectives are much higher than these overheads. © 2009 IEEE.