Browsing by Subject "Robust"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Robust least squares methods under bounded data uncertainties(Academic Press, 2015) Vanli, N. D.; Donmez, M. A.; Kozat, S. S.We study the problem of estimating an unknown deterministic signal that is observed through an unknown deterministic data matrix under additive noise. In particular, we present a minimax optimization framework to the least squares problems, where the estimator has imperfect data matrix and output vector information. We define the performance of an estimator relative to the performance of the optimal least squares (LS) estimator tuned to the underlying unknown data matrix and output vector, which is defined as the regret of the estimator. We then introduce an efficient robust LS estimation approach that minimizes this regret for the worst possible data matrix and output vector, where we refrain from any structural assumptions on the data. We demonstrate that minimizing this worst-case regret can be cast as a semi-definite programming (SDP) problem. We then consider the regularized and structured LS problems and present novel robust estimation methods by demonstrating that these problems can also be cast as SDP problems. We illustrate the merits of the proposed algorithms with respect to the well-known alternatives in the literature through our simulations.Item Open Access Yapısal veri belirsizlikleri altında yarışmacı doğrusal MMSE kestirim(IEEE, 2014-04) Vanlı, N. Denizcan; Sayın, Muhammed Ö.; Kozat, Süleyman S.Bu bildiride, yapısal veri belirsizlikleri altında doğrusal kestirim problemi incelenmektedir. Maliyet fonksiyonu olarak ortalama karesel hata (MSE) düşünülmüştür ve sınırlı belirsizlikler altında gürbüz bir algoritma önerilmiştir. Sunulan yöntem yarışmacı algoritma yapısına sahiptir ve bu yapıya ulaşmak için doğrusal kestiricinin performansı, bilinmeyen veri belirsizliklerine göre ayarlanmış doğrusal enküçük MSE (MMSE) kestiricisinin performansına göreceli olarak tanımlanmıştır.Daha sonra, bu göreceli performans ölçütünü en kötü durumdaki sistem modeline göre enküçülten doğrusal kestirici bulunmuştur. Bu yarışmacı kestiriciyi bulmak için çözülmesi gereken problemin yarı-kesin programlama (SDP) problemi olarak düşünülebileceği gösterilmiştir. Ayrıca, teorik sonuçları izah etmek için sayısal örnekler sunulmuştur.