Browsing by Subject "Retrieval performance"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Diversity based Relevance Feedback for Time Series Search(2013) Eravci, B.; Ferhatosmanoglu H.We propose a diversity based relevance feedback approach for time series data to improve the accuracy of search results. We first develop the concept of relevance feedback for time series based on dual-tree complex wavelet (CWT) and SAX based approaches. We aim to enhance the search quality by incorporating diversity in the results presented to the user for feedback. We then propose a method which utilizes the representation type as part of the feedback, as opposed to a human choosing based on a preprocessing or training phase. The proposed methods utilize a weighting to handle the relevance feedback of important properties for both single and multiple representation cases. Our experiments on a large variety of time series data sets show that the proposed diversity based relevance feedback improves the retrieval performance. Results confirm that representation feedback incorporates item diversity implicitly and achieves good performance even when using simple nearest neighbor as the retrieval method. To the best of our knowledge, this is the first study on diversification of time series search to improve retrieval accuracy and representation feedback. © 2013 VLDB Endowment.Item Unknown Ensemble of multiple instance classifiers for image re-ranking(Elsevier Ltd, 2014) Sener F.; Ikizler-Cinbis, N.Text-based image retrieval may perform poorly due to the irrelevant and/or incomplete text surrounding the images in the web pages. In such situations, visual content of the images can be leveraged to improve the image ranking performance. In this paper, we look into this problem of image re-ranking and propose a system that automatically constructs multiple candidate "multi-instance bags (MI-bags)", which are likely to contain relevant images. These automatically constructed bags are then utilized by ensembles of Multiple Instance Learning (MIL) classifiers and the images are re-ranked according to the final classification responses. Our method is unsupervised in the sense that, the only input to the system is the text query itself, without any user feedback or annotation. The experimental results demonstrate that constructing multiple instance bags based on the retrieval order and utilizing ensembles of MIL classifiers greatly enhance the retrieval performance, achieving on par or better results compared to the state-of-the-art. © 2014 Elsevier B.V.Item Unknown What's news, what's not? Associating news videos with words(Springer, 2004) Duygulu, P.; Hauptmann, A.Text retrieval from broadcast news video is unsatisfactory, because a transcript word frequently does not directly 'describe' the shot when it was spoken. Extending the retrieved region to a window around the matching keyword provides better recall, but low precision. We improve on text retrieval using the following approach: First we segment the visual stream into coherent story-like units, using a set of visual news story delimiters. After filtering out clearly irrelevant classes of shots, we are still left with an ambiguity of how words in the transcript relate to the visual content in the remaining shots of the story. Using a limited set of visual features at different semantic levels ranging from color histograms, to faces, cars, and outdoors, an association matrix captures the correlation of these visual features to specific transcript words. This matrix is then refined using an EM approach. Preliminary results show that this approach has the potential to significantly improve retrieval performance from text queries. © Springer-Verlag 2004.Item Unknown XML retrieval using pruned element-index files(Springer, Berlin, Heidelberg, 2010) Altıngövde, İsmail Şengör; Atılgan, Duygu; Ulusoy, ÖzgürAn element-index is a crucial mechanism for supporting content-only (CO) queries over XML collections. A full element-index that indexes each element along with the content of its descendants involves a high redundancy and reduces query processing efficiency. A direct index, on the other hand, only indexes the content that is directly under each element and disregards the descendants. This results in a smaller index, but possibly in return to some reduction in system effectiveness. In this paper, we propose using static index pruning techniques for obtaining more compact index files that can still result in comparable retrieval performance to that of a full index. We also compare the retrieval performance of these pruning based approaches to some other strategies that make use of a direct element-index. Our experiments conducted along with the lines of INEX evaluation framework reveal that pruned index files yield comparable to or even better retrieval performance than the full index and direct index, for several tasks in the ad hoc track. © 2010 Springer-Verlag Berlin Heidelberg.