BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Resveratrol"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Cytotoxic activity of resveratrol in different cell lines evaluated by MTT and NRU assays
    (Turkish Pharmacists Association, 2016) Anlar, H. G.; Bacanli, M.; Kutluk, B.; Başaran, A. A.; Başaran, N.
    Oxidative stress is the state of imbalance between the level of antioxidant defence system and production of reactive oxygen species (ROS) and is involded in the progression of several diseases such as inflammation, cancer, neurodegenerative disorders and cardiovascular diseases. It is suggested that plant polyphenols may act as antioxidants and therefore it has anti-cancer activities. Resveratrol (RV), is a naturally occuring polyphenolic compound which is found in many plant species including grapes, nuts, blueberries and raspberries. Data indicated that it has anti-oxidant, anti-inflamatory and anti-cancer activities. But there are also some studies reported that RV has not protective effects aganist cancer. In this study, the cytotoxicity of RV in human breast adenocarcinoma (MDA-MB 231), human cervical cancer (HeLa) and Chinese hamster lung fibroblast (V79) cells were evaluated by Neutral Red uptake assay (NRU) and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays after incubation at 24 h. We obtained more or the less same results by two cytotoxicity assays. In the concentrations between 2-400 μM, RV seemed not to induce a pronounced cytotoxicity in all cell types. Even at highest concentrations, it showed almost no cytotoxic effects. So the IC50 values were not calculated at the studied concentrations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Extended supercooled storage of red blood cells
    (Nature Publishing Group, 2024-06-24) Işıksaçan, Ziya; William, N.; Şentürk, R.; Boudreau, L.; Wooning, C.; Castellanos, E.; Işıksaçan, Salih; Yarmush, M.L.; Acker, J.P.; Usta, O.B.
    Red blood cell (RBC) transfusions facilitate many life-saving acute and chronic interventions. Transfusions are enabled through the gold-standard hypothermic storage of RBCs. Today, the demand for RBC units is unfulfilled, partially due to the limited storage time, 6 weeks, in hypothermic storage. This time limit stems from high metabolism-driven storage lesions at +1-6 °C. A recent and promising alternative to hypothermic storage is the supercooled storage of RBCs at subzero temperatures, pioneered by our group. Here, we report on long-term supercooled storage of human RBCs at physiological hematocrit levels for up to 23 weeks. Specifically, we assess hypothermic RBC additive solutions for their ability to sustain supercooled storage. We find that a commercially formulated next-generation solution (Erythro-Sol 5) enables the best storage performance and can form the basis for further improvements to supercooled storage. Our analyses indicate that oxidative stress is a prominent time- and temperature-dependent injury during supercooled storage. Thus, we report on improved supercooled storage of RBCs at −5 °C by supplementing Erythro-Sol 5 with the exogenous antioxidants, resveratrol, serotonin, melatonin, and Trolox. Overall, this study shows the long-term preservation potential of supercooled storage of RBCs and establishes a foundation for further improvement toward clinical translation.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Orally fast-disintegrating resveratrol/cyclodextrin nanofibrous films as a potential antioxidant dietary supplement
    (American Chemical Society, 2022-03-04) Celebioglu, A.; Tekant, D; Kilic, M.E.; Tekant, D.; Durgun, Engin; Uyar, T.
    Encapsulation of dietary supplements into electrospun cyclodextrin (CD) inclusion complex (IC) nanofibers can pave the way for the development of novel delivery systems with orally fast-disintegrating properties. Here, resveratrol/CD-IC nanofibrous films were fabricated using the electrospinning technique. Resveratrol is a well-known bioactive agent with its antioxidant potential, and it is commonly used in the formulation of dietary supplements. Here, the hydroxypropylated (HP-) βCD and γCD were used for both encapsulation of resveratrol and the electrospinning of free-standing nanofibrous films. SEM imaging confirmed the uniform fibrous morphology of electrospun films. The encapsulation and amorphization of resveratrol by inclusion complexation were verified using various techniques including FTIR, 1H NMR, XRD, DSC, TGA, and computational modeling. Besides the results of all these techniques, phase solubility studies also revealed the more favorable complex formation of resveratrol with HPβCD compared to HP γCD. Nanofibrous films were obtained having ∼100% loading efficiency without a loss during the process. The amorphous distribution of resveratrol and the unique properties of nanofibers ensured the fast disintegration of nanofibrous films in the saliva simulation. The enhanced solubility of resveratrol also ensured an improved antioxidant property. The polymeric resveratrol/pullulan nanofibrous film was also formed as a control sample. CD-IC nanofibrous films showed faster disintegration/dissolution, higher/faster release profile, and significantly better antioxidant potential compared to resveratrol/pullulan-based samples.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension
    (Kluwer Academic Publishers, 2015) Han, S.; Uludag, M.O.; Usanmaz, S.E.; Ayaloglu-Butun F.; Akcali, K.C.; Demirel-Yilmaz, E.
    Hypertension is a risk factor for the cardiovascular diseases. Although, several drugs are used to treat hypertension, the success of the antihypertensive therapy is limited. Resveratrol decreases blood pressure in animal models of hypertension. This study researched the mechanisms behind the effects of resveratrol on hypertension. Hypertension was induced by using the deoxycorticosterone acetate (DOCA)-induced (15 mg/kg twice per week, subcutaneously) salt-sensitive hypertension model of Wistar rats. Hypertension caused a decrease in endothelium-dependent relaxations of the isolated thoracic aorta. Resveratrol treatment (50 mg/l in drinking water) prevented DOCA salt-induced hypertension, but did not improve endothelial dysfunction. Plasma nitric oxide (NO), asymmetric dimethylarginine (ADMA), total antioxidant capacity (TAC) and hydrogen sulfide (H2S) levels were not changed by DOCA salt application. However, treatment of resveratrol significantly decreased ADMA and increased TAC and H2S levels. NO level in circulation was not significantly changed by resveratrol. DOCA salt application and resveratrol treatment also caused an alteration in the epigenetic modification of vessels. Staining pattern of histone 3 lysine 27 methylation (H3K27me3) in the aorta and renal artery sections was changed. These results show that preventive effect of resveratrol on DOCA salt-induced hypertension might due to its action on the production of some blood biomarkers and the epigenetic modification of vessels that would focus upon new aspect of hypertension prevention and treatment. © 2014, Springer Science+Business Media Dordrecht.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback