Browsing by Subject "Resistive switching"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Electrically controlled resistive switching assisted active ultra-broadband optical tunability in the infrared(IEEE, 2013) Battal, Enes; Özcan, Ayşe; Okyay, Ali KemalWe present an electrically tunable optical device with ultra-broadband tunability operating in 2-10 μm spectrum. We also, for the first time, optically observe resistive switching behavior in reflection measurements under electrical bias. © 2013 IEEE.Item Open Access Memristive behavior in a junctionless flash memory cell(American Institute of Physics Inc., 2015) Orak, I.; Ürel, M.; Bakan, G.; Dana, A.We report charge storage based memristive operation of a junctionless thin film flash memory cell when it is operated as a two terminal device by grounding the gate. Unlike memristors based on nanoionics, the presented device mode, which we refer to as the flashristor mode, potentially allows greater control over the memristive properties, allowing rational design. The mode is demonstrated using a depletion type n-channel ZnO transistor grown by atomic layer deposition (ALD), with HfO2 as the tunnel dielectric, AI2O3 as the control dielectric, and non-stoichiometric silicon nitride as the charge storage layer. The device exhibits the pinched hysteresis of a memristor and in the unoptimized device, R off/R on ratios of about 3 are presented with low operating voltages below 5 V. A simplified model predicts Roff/Ron ratios can be improved significantly by adjusting the native threshold voltage of the devices. The repeatability of the resistive switching is excellent and devices exhibit 106 s retention time, which can, in principle, be improved by engineering the gate stack and storage layer properties. The flashristor mode can find use in analog information processing applications, such as neuromorphic computing, where well-behaving and highly repeatable memristive properties are desirable.Item Open Access Reversible electrical reduction and oxidation of graphene oxide(American Chemical Society, 2011) Ekiz, O. O.; Ürel, M.; Güner, H.; Mizrak, A. K.; Dâna, A.We demonstrate that graphene oxide can be reversibly reduced and oxidized using electrical stimulus. Controlled reduction and oxidation in two-terminal devices containing multilayer graphene oxide films are shown to result in switching between partially reduced graphene oxide and graphene, a process which modifies the electronic and optical properties. High-resolution tunneling current and electrostatic force imaging reveal that graphene oxide islands are formed on multilayer graphene, turning graphene into a self-assembled heterostructure random nanomesh. Charge storage and resistive switching behavior is observed in two-terminal devices made of multilayer graphene oxide films, correlated with electrochromic effects. Tip-induced reduction and oxidation are also demonstrated. Results are discussed in terms of thermodynamics of oxidation and reduction reactions. © 2011 American Chemical Society.