BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Research and development management"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Automatic ranking of information retrieval systems using data fusion
    (Elsevier Ltd, 2006-05) Nuray, R.; Can, F.
    Measuring effectiveness of information retrieval (IR) systems is essential for research and development and for monitoring search quality in dynamic environments. In this study, we employ new methods for automatic ranking of retrieval systems. In these methods, we merge the retrieval results of multiple systems using various data fusion algorithms, use the top-ranked documents in the merged result as the "(pseudo) relevant documents," and employ these documents to evaluate and rank the systems. Experiments using Text REtrieval Conference (TREC) data provide statistically significant strong correlations with human-based assessments of the same systems. We hypothesize that the selection of systems that would return documents different from the majority could eliminate the ordinary systems from data fusion and provide better discrimination among the documents and systems. This could improve the effectiveness of automatic ranking. Based on this intuition, we introduce a new method for the selection of systems to be used for data fusion. For this purpose, we use the bias concept that measures the deviation of a system from the norm or majority and employ the systems with higher bias in the data fusion process. This approach provides even higher correlations with the human-based results. We demonstrate that our approach outperforms the previously proposed automatic ranking methods. © 2005 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Site-based dynamic pruning for query processing in search engines
    (ACM, 2008-07) Altıngövde İsmail Şengör; Demir, Engin; Can, Fazlı; Ulusoy, Özgür
    Web search engines typically index and retrieve at the page level. In this study, we investigate a dynamic pruning strategy that allows the query processor to first determine the most promising websites and then proceed with the similarity computations for those pages only within these sites.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback