BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Reliable operation"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Nanomechanical motion transducers for miniaturized mechanical systems
    (MDPI AG, 2017) Kouh, T.; Hanay, M. S.; Ekinci, K. L.
    Reliable operation of a miniaturized mechanical system requires that nanomechanical motion be transduced into electrical signals (and vice versa) with high fidelity and in a robust manner. Progress in transducer technologies is expected to impact numerous emerging and future applications of micro- and, especially, nanoelectromechanical systems (MEMS and NEMS); furthermore, high-precision measurements of nanomechanical motion are broadly used to study fundamental phenomena in physics and biology. Therefore, development of nanomechanical motion transducers with high sensitivity and bandwidth has been a central research thrust in the fields of MEMS and NEMS. Here, we will review recent progress in this rapidly-advancing area.
  • No Thumbnail Available
    ItemOpen Access
    Using nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effect
    (Springer Verlag, 2017) Okyay, Ali Kemal; Hanoglu, O.; Yuksel, M.; Acar, H.; Sülek, S.; Tekcan, B.; Agan, S.; Bıyıklı, Necmi; Güler, Mustafa O.
    Point-of-care biosensor applications require low-cost and low-power solutions. They offer being easily accessible at home site. They are usable without any complex sample handling or any kind of special expertise. Impedance spectroscopy has been utilized for point-of-care biosensor applications; however, electrical double layer formed due to ions in the solution of interest has been a challenge, due to shielding of the electric field used for sensing the target molecules. Here in this study, we demonstrate a nanogap based biosensor structure with a relatively low frequency (1–100 kHz) measurement technique, which not only eliminates the undesired shielding effect of electrical double layer but also helps in minimizing the measurement volume and enabling low concentration (µ molar level) detection of target molecules (streptavidin). Repeatability and sensitivity tests proved stable and reliable operation of the sensors. These biosensors might offer attributes such as low-cost label-free detection, fast measurement and monolithic chip integrability.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize