BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Reduced graphene oxides"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    One-step codoping of reduced graphene oxide using boric and nitric acid mixture and its use in metal-free electrocatalyst
    (Elsevier, 2015) Tien H.N.; Kocabas, C.; Hur, S.H.
    In this study, the preparation of a highly efficient metal-free electrocatalyst, boron and nitrogen codoped reduced graphene oxide (BN-rGO), with an excellent durability is reported. The BN-rGO were prepared in one step using boric and nitric acid mixture, exhibiting highly improved oxygen reduction reaction (ORR) activity than those of the pristine GO and single doped rGOs. The electrocatalyst also showed the excellent long-term durability and CO tolerance than those of the commercial Pt/C catalysts. © 2014 Elsevier B.V.All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Polymeric nanofibers decorated with reduced graphene oxide nanoflakes
    (Elsevier, 2017) Ranjith, K. S.; Uyar, Tamer
    Research into graphene-polymeric based membranes by tuning its structural and functional properties will facilitate new opportunities on these hierarchical platforms. The objective is to play a role on the external skin of the polymeric nanofibers to enhance it structural and functional properties by introducing thin layered graphene oxide flakes to improve the absorption behavior, and to modulate the mechanical and electronic properties and more. By modifying the polymers and including some metal nanostructures within the graphene functionality may lead to the development of complex hybrid system for advanced applicability in fields such as catalyst, electronics, sensing, storage based devices, etc. Constructing the graphenebased systems with polymeric membranes having unique architecture and functionality will provide innovation in materials science in related fields. The hierarchical arrangement of reduced graphene oxide-polymeric membrane can play a key role in multifunctional application in the fields of electronics, catalysts, and sensors.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback