Browsing by Subject "Reconfigurable"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Optically reconfigurable planar monopole antenna for cognitive radio application(Wiley Periodicals, Inc., 2019) Ali, A.; Topalli, K.; Ramzan, M.; Alibakhshikenari, M.; Khan, Talha Masood; Altıntaş, Ayhan; Colantonio, P.Frequency reconfigurable antenna is one of the important elements needed for cognitive radio application. Such antenna can be designed using highly resistive (HR) silicon (Si) operating as an optical switch. This letter presents a novel frequency reconfigurable planar monopole antenna suitable for cognitive radio application. The antenna is designed using HR Si working as an optical switch. The main idea behind the design of antenna is the redistribution of surface current on the antenna while changing the state of Si switches optically from high resistance to low resistance. The antenna is highly compact and uses only two switches for multiband reconfiguration. It is switchable on 1.9 GHz, 2.75 GHz, 3.7 GHz, 4.1 GHz, 4.6 GHz, 4.8 GHz, and 7.6 to 11 GHz frequency bands. Simulated and measured results are presented for the antenna. To the best of authors knowledge, this is the first multiband optically reconfigurable planar monopole antenna.Item Open Access Optimization-based power and thermal management for dark silicon aware 3D chip multiprocessors using heterogeneous cache hierarchy(Elsevier BV, 2017) Asad, A.; Ozturk, O.; Fathy, M.; Jahed-Motlagh, M. R.Management of a problem recently known as “dark silicon” is a new challenge in multicore designs. Prior innovative studies have addressed the dark silicon problem in the fields of power-efficient core design. However, addressing dark silicon challenges in uncore component designs such as cache hierarchy, on-chip interconnect etc. that consume significant portion of the on-chip power consumption is largely unexplored. In this paper, for the first time, we propose an integrated approach which considers the impact of power consumption of core and uncore components simultaneously to improve multi/many-core performance in the dark silicon era. The proposed approach dynamically (1) predicts the changing program behavior on each core; (2) re-determines frequency/voltage, cache capacity and technology in each level of the cache hierarchy based on the program's scalability in order to satisfy the power and temperature constraints. In the proposed architecture, for future chip-multiprocessors (CMPs), we exploit emerging technologies such as non-volatile memories (NVMs) and 3D techniques to combat dark silicon. Also, for the first time, we propose a detailed power model which is useful for future dark silicon CMPs power modeling. Experimental results on SPEC 2000/2006 benchmarks show that the proposed method improves throughput by about 54.3% and energy-delay product by about 61% on average, respectively, in comparison with the conventional CMP architecture with homogenous cache system. (A preliminary short version of this work was presented in the 18th Euromicro Conference on Digital System Design (DSD), 2015.) © 2017 Elsevier B.V.Item Open Access Reconfigurable nested ring-split ring transmitarray unit cell employing the element rotation method by microfluidics(Institute of Electrical and Electronics Engineers, 2015) Erdil, E.; Topalli, K.; Esmaeilzad, N. S.; Zorlu, O.; Kulah, H.; Aydin, C. O.A continuously tunable, circularly polarized X-band microfluidic transmitarray unit cell employing the element rotation method is designed and fabricated. The unit cell comprises a double layer nested ring-split ring structure realized as microfluidic channels embedded in Polydimethylsiloxane (PDMS) using soft lithography techniques. Conductive regions of the rings are formed by injecting a liquid metal (an alloy of Ga, In, and Sn), whereas the split region is air. Movement of the liquid metal together with the split around the ring provides 360° linear phase shift range in the transmitted field through the unit cell. A circularly polarized unit cell is designed to operate at 8.8 GHz, satisfying the necessary phase shifting conditions provided by the element rotation method. Unit cell prototypes are fabricated and the proposed concept is verified by the measurements using waveguide simulator method, within the frequency range of 8-10 GHz. The agreement between the simulation and measurement results is satisfactory, illustrating the viability of the approach to be used in reconfigurable antennas and antenna arrays.