Browsing by Subject "Recent progress"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Graphene-based optical modulators(World Scientific Publishing Co. Pte. Ltd., 2017) Balci S.; Kocabas, C.In this chapter, we summarize the recent progress on graphene based optical modulators. Ability to control density of high mobility electrons on large area graphene surface enables realization of new type of electrooptical modulators in optoelectronics. Due to the low electronic density of states, accumulation of charges on graphene significantly shifts the Fermi energy up to 1 eV giving rise to profound optical effects in the infrared and visible spectra. On the other hand, graphene operates as a tunable Drude metal in long wavelengths such as THz and microwave. This unique broadband activity of graphene has stimulated a great deal of interest in graphene community due to its potential use in new optoelectronic devices. After discussing the electrically tunable optical properties of graphene, we highlight the key achievements in the field.Item Open Access Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap(American Physical Society, 2015) Ünal, F. N.; Hetényi, B.; Oktel, M. Ö.The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.Item Open Access Nonlinearity management: from fiber oscillators to amplifiers(IEEE, 2016) İlday, Fatih Ömer; Şenel, Ç.; Hamid, R.; Teamir, Tesfay G.; Pavlov, Ihor; Teğin, Uğur; Ergeçen, E.; Elahi, Parviz; Iegorov, R.While the standard approach to performance scaling in fiber lasers seeks to reduce nonlinear effects through chirping or mode scaling, I will review recent progress in a complementary approach, whereby the governing dynamics are meticulously exploited towards achieving superior performance.Item Open Access Optimizing local memory allocation and assignment through a decoupled approach(Springer, 2010-10) Diouf, B.; Öztürk, Özcan; Cohen, A.Software-controlled local memories (LMs) are widely used to provide fast, scalable, power efficient and predictable access to critical data. While many studies addressed LM management, keeping hot data in the LM continues to cause major headache. This paper revisits LM management of arrays in light of recent progresses in register allocation, supporting multiple live-range splitting schemes through a generic integer linear program. These schemes differ in the grain of decision points. The model can also be extended to address fragmentation, assigning live ranges to precise offsets. We show that the links between LM management and register allocation have been underexploited, leaving much fundamental questions open and effective applications to be explored. © 2010 Springer-Verlag.Item Open Access Quantum dot integrated LEDs using photonic and excitonic color conversion(Elsevier, 2011-11-23) Demir, Hilmi Volkan; Nizamoglu, S.; Erdem, T.; Mutlugun, E.; Gaponik N.; Eychmüller A.This review summarizes advantages, recent progress and challenges related to the quickly evolving research field of colloidal quantum dot integrated LEDs based on color conversion. We start with presenting a short general introduction to the field of solid state lighting and color conversion phenomena, which are essential for defining the requirements for high-quality general lighting. Subsequently we continue with a brief description of the synthesis of nanocrystal quantum dots and their optical properties together with the advantages of utilizing them in LEDs as color convertors. Following this basic background, we review the recent efforts on quantum dot integrated color-conversion LEDs, Förster resonance energy transfer (FRET) converted LEDs and FRET-enhanced LEDs. Finally, we conclude with a future outlook on semiconductor lighting and quantum dot integrated LEDs.