Browsing by Subject "Realistic modeling"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Computational modeling of quantum-confined impact ionization in Si nanocrystals embedded in SiO2(2007) Sevik, C.; Bulutay, C.Injected carriers from the contacts to delocalized bulk states of the oxide matrix via Fowler-Nordheim tunneling can give rise to quantum-confined impact ionization (QCII) of the nanocrystal (NC) valence electrons. This process is responsible for the creation of confined excitons in NCs, which is a key luminescence mechanism. For a realistic modeling of QCII in Si NCs, a number of tools are combined: ensemble Monte Carlo (EMC) charge transport, ab initio modeling for oxide matrix, pseudopotential NC electronic states together with the closed-form analytical expression for the Coulomb matrix element of the QCII. To characterize the transport properties of the embedding amorphous SiO2, ab initio band structure and density of states of the α-quartz phase of SiO2 are employed. The confined states of the Si NC are obtained by solving the atomistic pseudopotential Hamiltonian. With these ingredients, realistic modeling of the QCII process involving a SiO2 bulk state hot carrier and the NC valence electrons is provided.Item Open Access Realistic modeling of spectator behavior for soccer videogames with CUDA(2011) Ylmaz, E.; Molla, E.; Yıldız, C.; İşler V.Soccer has always been one of the most popular videogame genres. When designing a soccer game, designers tend to focus on the game field and game play due to the limited computational resources, and thus the modelling of virtual spectators is paid less attention. In this study we present a novel approach to the modeling of spectator behavior, which treats each spectator as a unique individual. We also propose an independent software layer for sport-based games that simply obtains the game status from the game engine via a simple messaging protocol and computes the spectator behavior accordingly. The result is returned to the game engine, to be used in the animation and rendering of the spectators. Additionally, we offer a customizable spectator knowledge base with well structured XML to minimize coding efforts, while generating individualized behavior. The employed AI is based on fuzzy inference. In order to overcome additional demand for computing realistic spectator behavior, we use GPU parallel computing with CUDA. © 2011 Elsevier Ltd. All rights reserved.